Publication Search Results

Search Results

Showing 1-6 of about 6 results.
Tree death and damage: A standardized protocol for frequent surveys in tropical forestsArellano, GabrielZuleta, DanielDavies, Stuart J.DOI: info:10.1111/jvs.12981v. 32No. 1
Arellano, Gabriel, Zuleta, Daniel, and Davies, Stuart J. 2021. "Tree death and damage: A standardized protocol for frequent surveys in tropical forests." Journal of Vegetation Science 32 (1):https://doi.org/10.1111/jvs.12981
ID: 159181
Type: article
Authors: Arellano, Gabriel; Zuleta, Daniel; Davies, Stuart J.
Abstract: Tree mortality drives changes in forest structure and dynamics, community composition, and carbon and nutrient cycles. Since tropical forests store a large fraction of terrestrial biomass and tree diversity, improved understanding of changing tree mortality and biomass loss rates is critical. Tropical tree mortality rates have been challenging to estimate due to low background rates of tree death, and high spatial and temporal heterogeneity. Furthermore, the causes of mortality remain unclear because many factors may be involved in individual tree death, and the rapid decomposition of wood in the tropics obscures evidence of possible causes of tree mortality. We present a field protocol to assess tree mortality in tropical forests. The protocol focuses on the rapid, repeatable and inexpensive assessment of individual tree death and damage. The protocol has been successfully tested with annual assessments of >62,000 stems in total in several ForestGEO plots in Asia and the Neotropics. Standardized methods for the assessment of tree death and biomass loss will advance understanding of the underlying causes and consequences of tree mortality.
ForestGEO: Understanding forest diversity and dynamics through a global observatory networkDavies, Stuart J.Abiem, IverenAbu Salim, KamariahAguilar, SalomonAllen, DavidAlonso, AlfonsoAnderson-Teixeira, KristinaAndrade, AnaArellano, GabrielAshton, Peter S.Baker, Patrick J.Baker, Matthew E.Baltzer, Jennifer L.Basset, YvesBissiengou, PulcherieBohlman, StephanieBourg, Norman A.Brockelman, Warren Y.Bunyavejchewin, SarayudhBurslem, David F. R. P.Cao, MinCardenas, DaironChang, Li-WanChang-Yang, Chia-HaoChao, Kuo-JungChao, Wei-ChunChapman, HazelChen, Yu-YunChisholm, Ryan A.Chu, ChengjinChuyong, GeorgeClay, KeithComita, Liza S.Condit, RichardCordell, SusanDattaraja, Handanakere S.de Oliveira, Alexandre Adalardoden Ouden, JanDetto, MatteoDick, ChristopherDu, XiaojunDuque, AlvaroEdiriweera, SisiraEllis, Erle C.Obiang, Nestor Laurier EngoneEsufali, ShameemaEwango, Corneille E. N.Fernando, Edwino S.Filip, JonahFischer, Gunter A.Foster, RobinGiambelluca, ThomasGiardina, ChristianGilbert, Gregory S.Gonzalez-Akre, ErikaGunatilleke, I. A. U. N.Gunatilleke, C. V. S.Hao, ZhanqingHau, Billy C. H.He, FangliangNi, HongweiHowe, Robert W.Hubbell, Stephen P.Huth, AndreasInman-Narahari, FaithItoh, AkiraJanik, DavidJansen, Patrick A.Jiang, MingxiJohnson, Daniel J.Jones, F. AndrewKanzaki, MamoruKenfack, DavidKiratiprayoon, SomboonKral, KamilKrizel, LaurenLao, SuzanneLarson, Andrew J.Li, YideLi, XiankunLitton, Creighton M.Liu, YuLiu, ShirongLum, Shawn K. Y.Luskin, Matthew S.Lutz, James A.Hong Truong LuuMa, KepingMakana, Jean-RemyMalhi, YadvinderMartin, AdamMcCarthy, CalyMcMahon, Sean M.McShea, William J.Memiaghe, HerveMi, XiangchengMitre, DavidMohamad, MohizahMonks, LoganMuller-Landau, Helene C.Musili, Paul M.Myers, Jonathan A.Nathalang, AnuttaraNgo, Kang MinNorden, NataliaNovotny, VojtechO'Brien, Michael J.Orwig, DavidOstertag, RebeccaPapathanassiou, KonstantinosParker, Geoffrey G.Perez, RolandoPerfecto, IvettePhillips, Richard P.Pongpattananurak, NantachaiPretzsch, HansRen, HaiboReynolds, GlenRodriguez, Lillian J.Russo, Sabrina E.Sack, LawrenSang, WeiguoShue, JessicaSingh, AnudeepSong, Guo-Zhang M.Sukumar, RamanSun, I-FangSuresh, Hebbalalu S.Swenson, Nathan G.Tan, SylvesterThomas, Sean C.Thomas, DuncanThompson, JillTurner, Benjamin L.Uowolo, AmandaUriarte, MariaValencia, RenatoVandermeer, JohnVicentini, AlbertoVisser, MarcoVrska, TomasWang, XugaoWang, XihuaWeiblen, George D.Whitfeld, Timothy J. S.Wolf, Y.Wright, S. JosephXu, HanYao, Tze LeongYap, Sandra L.Ye, WanhuiYu, MingjianZhang, MinhuaZhu, DaoguangZhu, LiZimmerman, Jess K.Zuleta, DanielDOI: info:10.1016/j.biocon.2020.108907v. 253108907–108907
Davies, Stuart J., Abiem, Iveren, Abu Salim, Kamariah, Aguilar, Salomon, Allen, David, Alonso, Alfonso, Anderson-Teixeira, Kristina, Andrade, Ana, Arellano, Gabriel, Ashton, Peter S., Baker, Patrick J., Baker, Matthew E., Baltzer, Jennifer L., Basset, Yves, Bissiengou, Pulcherie, Bohlman, Stephanie, Bourg, Norman A., Brockelman, Warren Y., Bunyavejchewin, Sarayudh, Burslem, David F. R. P., Cao, Min, Cardenas, Dairon, Chang, Li-Wan, Chang-Yang, Chia-Hao, Chao, Kuo-Jung et al. 2021. "ForestGEO: Understanding forest diversity and dynamics through a global observatory network." Biological Conservation 253:108907– 108907. https://doi.org/10.1016/j.biocon.2020.108907
ID: 158553
Type: article
Authors: Davies, Stuart J.; Abiem, Iveren; Abu Salim, Kamariah; Aguilar, Salomon; Allen, David; Alonso, Alfonso; Anderson-Teixeira, Kristina; Andrade, Ana; Arellano, Gabriel; Ashton, Peter S.; Baker, Patrick J.; Baker, Matthew E.; Baltzer, Jennifer L.; Basset, Yves; Bissiengou, Pulcherie; Bohlman, Stephanie; Bourg, Norman A.; Brockelman, Warren Y.; Bunyavejchewin, Sarayudh; Burslem, David F. R. P.; Cao, Min; Cardenas, Dairon; Chang, Li-Wan; Chang-Yang, Chia-Hao; Chao, Kuo-Jung; Chao, Wei-Chun; Chapman, Hazel; Chen, Yu-Yun; Chisholm, Ryan A.; Chu, Chengjin; Chuyong, George; Clay, Keith; Comita, Liza S.; Condit, Richard; Cordell, Susan; Dattaraja, Handanakere S.; de Oliveira, Alexandre Adalardo; den Ouden, Jan; Detto, Matteo; Dick, Christopher; Du, Xiaojun; Duque, Alvaro; Ediriweera, Sisira; Ellis, Erle C.; Obiang, Nestor Laurier Engone; Esufali, Shameema; Ewango, Corneille E. N.; Fernando, Edwino S.; Filip, Jonah; Fischer, Gunter A.; Foster, Robin; Giambelluca, Thomas; Giardina, Christian; Gilbert, Gregory S.; Gonzalez-Akre, Erika; Gunatilleke, I. A. U. N.; Gunatilleke, C. V. S.; Hao, Zhanqing; Hau, Billy C. H.; He, Fangliang; Ni, Hongwei; Howe, Robert W.; Hubbell, Stephen P.; Huth, Andreas; Inman-Narahari, Faith; Itoh, Akira; Janik, David; Jansen, Patrick A.; Jiang, Mingxi; Johnson, Daniel J.; Jones, F. Andrew; Kanzaki, Mamoru; Kenfack, David; Kiratiprayoon, Somboon; Kral, Kamil; Krizel, Lauren; Lao, Suzanne; Larson, Andrew J.; Li, Yide; Li, Xiankun; Litton, Creighton M.; Liu, Yu; Liu, Shirong; Lum, Shawn K. Y.; Luskin, Matthew S.; Lutz, James A.; Hong Truong Luu; Ma, Keping; Makana, Jean-Remy; Malhi, Yadvinder; Martin, Adam; McCarthy, Caly; McMahon, Sean M.; McShea, William J.; Memiaghe, Herve; Mi, Xiangcheng; Mitre, David; Mohamad, Mohizah; Monks, Logan; Muller-Landau, Helene C.; Musili, Paul M.; Myers, Jonathan A.; Nathalang, Anuttara; Ngo, Kang Min; Norden, Natalia; Novotny, Vojtech; O'Brien, Michael J.; Orwig, David; Ostertag, Rebecca; Papathanassiou, Konstantinos; Parker, Geoffrey G.; Perez, Rolando; Perfecto, Ivette; Phillips, Richard P.; Pongpattananurak, Nantachai; Pretzsch, Hans; Ren, Haibo; Reynolds, Glen; Rodriguez, Lillian J.; Russo, Sabrina E.; Sack, Lawren; Sang, Weiguo; Shue, Jessica; Singh, Anudeep; Song, Guo-Zhang M.; Sukumar, Raman; Sun, I-Fang; Suresh, Hebbalalu S.; Swenson, Nathan G.; Tan, Sylvester; Thomas, Sean C.; Thomas, Duncan; Thompson, Jill; Turner, Benjamin L.; Uowolo, Amanda; Uriarte, Maria; Valencia, Renato; Vandermeer, John; Vicentini, Alberto; Visser, Marco; Vrska, Tomas; Wang, Xugao; Wang, Xihua; Weiblen, George D.; Whitfeld, Timothy J. S.; Wolf, Y.; Wright, S. Joseph; Xu, Han; Yao, Tze Leong; Yap, Sandra L.; Ye, Wanhui; Yu, Mingjian; Zhang, Minhua; Zhu, Daoguang; Zhu, Li; Zimmerman, Jess K.; Zuleta, Daniel
Abstract: ForestGEO is a network of scientists and long-term forest dynamics plots (FDPs) spanning the Earth's major forest types. ForestGEO's mission is to advance understanding of the diversity and dynamics of forests and to strengthen global capacity for forest science research. ForestGEO is unique among forest plot networks in its large-scale plot dimensions, censusing of all stems >= 1 cm in diameter, inclusion of tropical, temperate and boreal forests, and investigation of additional biotic (e.g., arthropods) and abiotic (e.g., soils) drivers, which together provide a holistic view of forest functioning. The 71 FDPs in 27 countries include approximately 7.33 million living trees and about 12,000 species, representing 20% of the world's known tree diversity. With >1300 published papers, ForestGEO researchers have made significant contributions in two fundamental areas: species coexistence and diversity, and ecosystem functioning. Specifically, defining the major biotic and abiotic controls on the distribution and coexistence of species and functional types and on variation in species' demography has led to improved understanding of how the multiple dimensions of forest diversity are structured across space and time and how this diversity relates to the processes controlling the role of forests in the Earth system. Nevertheless, knowledge gaps remain that impede our ability to predict how forest diversity and function will respond to climate change and other stressors. Meeting these global research challenges requires major advances in standardizing taxonomy of tropical species, resolving the main drivers of forest dynamics, and integrating plot-based ground and remote sensing observations to scale up estimates of forest diversity and function, coupled with improved predictive models. However, they cannot be met without greater financial commitment to sustain the long-term research of ForestGEO and other forest plot networks, greatly expanded scientific capacity across the world's forested nations, and increased collaboration and integration among research networks and disciplines addressing forest science.
Climate-driven changes in the composition of New World plant communitiesFeeley, K. J.Bravo-Avila, C.Fadrique, B.Perez, T. M.Zuleta, DanielDOI: info:10.1038/s41558-020-0873-2v. 10No. 10965–970
Feeley, K. J., Bravo-Avila, C., Fadrique, B., Perez, T. M., and Zuleta, Daniel. 2020. "Climate-driven changes in the composition of New World plant communities." Nature Climate Change 10 (10):965– 970. https://doi.org/10.1038/s41558-020-0873-2
ID: 159211
Type: article
Authors: Feeley, K. J.; Bravo-Avila, C.; Fadrique, B.; Perez, T. M.; Zuleta, Daniel
EpIG‐DB: A database of vascular epiphyte assemblages in the NeotropicsMendieta‐Leiva, GlendaRamos, Flavio N.Elias, João P. C.Zotz, GerhardAcuña‐Tarazona, MargothAlvim, Francine SeehaberBarbosa, Daniel E. F.Basílio, Geicilaine A.Batke, Sven P.Benavides, Ana MaríaBlum, Christopher T.Boelter, Carlos R.Brancalion, Pedro H. S.Carmona, María JudithCarvalho, Luciana P.de la Rosa‐Manzano, EdiliaEinzmann, Helena J. R.Fernández, ManuelFurtado, Samyra G.de Gasper, André L.Guzmán‐Jacob, ValeriaHietz, PeterIrume, Mariana V.Jiménez‐López, Derio AntonioKessler, MichaelKreft, HolgerKrömer, ThorstenMachado, Giesta Maria O.Martínez‐Meléndez, NayelyMartins, Pedro Luiz S. S.de Macêdo Mello, RodrigoMendes, Alex F.Menini Neto, LuizMortara, Sara R.Nardy, Camilade Paula Oliveira, RodolfoPereira, Ana Clara A.Pillaca, LuisQuaresma, Adriano C.Rodríguez Quiel, CalixtoSoto Medina, EdierTaylor, AmandaVega, Michael S.Wagner, KatrinWerneck, MáWerner, Florian A.Wolf, Jan H. D.Zartman, Charles E.Zuleta, DanielJímenez‐Alfaro, BorjaDOI: info:10.1111/jvs.12867v. 31No. 3518–528
Mendieta‐Leiva, Glenda, Ramos, Flavio N., Elias, João P. C., Zotz, Gerhard, Acuña‐Tarazona, Margoth, Alvim, Francine Seehaber, Barbosa, Daniel E. F., Basílio, Geicilaine A., Batke, Sven P., Benavides, Ana María, Blum, Christopher T., Boelter, Carlos R., Brancalion, Pedro H. S., Carmona, María Judith, Carvalho, Luciana P., de la Rosa‐Manzano, Edilia, Einzmann, Helena J. R., Fernández, Manuel, Furtado, Samyra G., de Gasper, André L., Guzmán‐Jacob, Valeria, Hietz, Peter, Irume, Mariana V., Jiménez‐López, Derio Antonio, Kessler, Michael et al. 2020. "EpIG‐DB: A database of vascular epiphyte assemblages in the Neotropics." Journal of Vegetation Science 31 (3):518– 528. https://doi.org/10.1111/jvs.12867
ID: 154350
Type: article
Authors: Mendieta‐Leiva, Glenda; Ramos, Flavio N.; Elias, João P. C.; Zotz, Gerhard; Acuña‐Tarazona, Margoth; Alvim, Francine Seehaber; Barbosa, Daniel E. F.; Basílio, Geicilaine A.; Batke, Sven P.; Benavides, Ana María; Blum, Christopher T.; Boelter, Carlos R.; Brancalion, Pedro H. S.; Carmona, María Judith; Carvalho, Luciana P.; de la Rosa‐Manzano, Edilia; Einzmann, Helena J. R.; Fernández, Manuel; Furtado, Samyra G.; de Gasper, André L.; Guzmán‐Jacob, Valeria; Hietz, Peter; Irume, Mariana V.; Jiménez‐López, Derio Antonio; Kessler, Michael; Kreft, Holger; Krömer, Thorsten; Machado, Giesta Maria O.; Martínez‐Meléndez, Nayely; Martins, Pedro Luiz S. S.; de Macêdo Mello, Rodrigo; Mendes, Alex F.; Menini Neto, Luiz; Mortara, Sara R.; Nardy, Camila; de Paula Oliveira, Rodolfo; Pereira, Ana Clara A.; Pillaca, Luis; Quaresma, Adriano C.; Rodríguez Quiel, Calixto; Soto Medina, Edier; Taylor, Amanda; Vega, Michael S.; Wagner, Katrin; Werneck, Má; Werner, Florian A.; Wolf, Jan H. D.; Zartman, Charles E.; Zuleta, Daniel; Jímenez‐Alfaro, Borja
Abstract: Vascular epiphytes are a diverse and conspicuous component of biodiversity in tropical and subtropical forests. Still, the patterns and drivers of epiphyte assemblages are poorly studied in comparison to soil‐rooted plants. Our current knowledge about diversity patterns of epiphytes mainly stems from local studies or floristic inventories, but this information has not yet been integrated to understand large‐scale distribution patterns better. EpIG‐DB, the first database on epiphyte assemblages at the continental scale, results from an exhaustive compilation of published and unpublished inventory data from the Neotropics. The current version of EpIG‐DB consists of 463 196 individual epiphytes from 3005 species, which were collected from a total of 18,148 relevés (host trees and "understory" plots). EpIG‐DB reports the occurrence of "true" epiphytes, hemi‐epiphytes and nomadic vines, including information on their cover, abundance, frequency and biomass. Most records (97%) correspond to sampled host trees, 76% of them aggregated in forest plots. The data is stored in a TURBOVEG database using the most up‐to‐date checklist of vascular epiphytes. For the standardization of associated data commonly used in epiphyte ecology, e.g. by considering different sampling methods, 18 additional fields were created. EpIG‐DB currently covers six major biomes across the whole latitudinal range of epiphytes in the Neotropics but welcomes data globally. This novel database provides, for the first time, unique biodiversity data on epiphytes for the Neotropics and unified guidelines for future collection of epiphyte data. EpIG‐DB will allow to explore new ways of studying the community ecology and biogeography of vascular epiphytes.
Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian AmazonZuleta, DanielRusso, Sabrina E.Barona, AndrésBarreto-Silva, JuanCardenas, DaironCastaño, NicolasDavies, Stuart J.Detto, MatteoSua, SoniaTurner, Benjamin L.Duque, AlvaroDOI: info:10.1007/s11104-018-3878-01–17
Zuleta, Daniel, Russo, Sabrina E., Barona, Andrés, Barreto-Silva, Juan, Cardenas, Dairon, Castaño, Nicolas, Davies, Stuart J., Detto, Matteo, Sua, Sonia, Turner, Benjamin L., and Duque, Alvaro. 2018. "Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon." Plant and Soil 1– 17. https://doi.org/10.1007/s11104-018-3878-0
ID: 150003
Type: article
Authors: Zuleta, Daniel; Russo, Sabrina E.; Barona, Andrés; Barreto-Silva, Juan; Cardenas, Dairon; Castaño, Nicolas; Davies, Stuart J.; Detto, Matteo; Sua, Sonia; Turner, Benjamin L.; Duque, Alvaro
Abstract: AimsTo test the relative importance of topography versus soil chemistry in defining tree species-habitat associations in a terra firme Amazonian forest.MethodWe evaluated habitat associations for 612 woody species using alternative habitat maps generated from topography and soil chemistry in the 25-ha Amacayacu Forest Dynamics Plot, Colombian Amazon. We assessed the ability of each habitat map to explain the community-level patterns of species-habitat associations using two methods of habitat randomization and different sample size thresholds (i.e., species’ abundance).ResultsThe greatest proportion of species-habitat associations arose from topographically-defined habitats (55% to 63%) compared to soil chemistry-defined (19% to 40%) or topography plus soil chemistry-defined habitats (18% to 42%). Results were robust to the method of habitat randomization and to sample size threshold.ConclusionsOur results demonstrate that certain environmental factors may be more influential than others in defining forest-level patterns of community assembly and that comparison of the ability of different environmental variables to explain habitat associations is a crucial step in testing hypotheses about the mechanisms underlying assembly. Our results point to topography-driven hydrological variation as a key factor structuring tree species distributions in what are commonly considered homogeneous Amazonian terra firme forests.
Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian AmazonZuleta, DanielDuque, AlvaroCardenas, DaironMuller-Landau, Helene C.Davies, StuartDOI: info:10.1002/ecy.1950v. 98No. 102538–2546
Zuleta, Daniel, Duque, Alvaro, Cardenas, Dairon, Muller-Landau, Helene C., and Davies, Stuart. 2017. "Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon." Ecology 98 (10):2538– 2546. https://doi.org/10.1002/ecy.1950
ID: 143244
Type: article
Authors: Zuleta, Daniel; Duque, Alvaro; Cardenas, Dairon; Muller-Landau, Helene C.; Davies, Stuart
Abstract: Extreme climatic events affecting the Amazon region are expected to become more frequent under ongoing climate change. In this study, we assessed the responses to the 2010 drought of over 14,000 trees ≥ 10 cm dbh in a 25 ha lowland forest plot in the Colombian Amazon and how these responses varied among topographically defined habitats, with tree size, and with species wood density. Tree mortality was significantly higher during the 2010-2013 period immediately after the drought than in 2007-2010. The post-drought increase in mortality was stronger for trees located in valleys (+243%) than for those located on slopes (+67%) and ridges (+57%). Tree-based generalized linear mixed models showed a significant negative effect of species wood density on mortality and no effect of tree size. Despite the elevated post-drought mortality, aboveground biomass increased from 2007 to 2013 by 1.62 Mg ha(-1) y(-1) (95% CI 0.80-2.43 Mg ha(-1) y(-1) ). Biomass change varied among habitats, with no significant increase on the slopes (1.05, 95% CI -0.76 to 2.85 Mg ha(-1) y(-1) ), a significant increase in the valleys (1.33, 95% CI 0.37-2.34 Mg ha(-1) y(-1) ), and a strong increase on the ridges (2.79, 95% CI 1.20-4.21 Mg ha(-1) y(-1) ). These results indicate a high carbon resilience of this forest to the 2010 drought due to habitat-associated and interspecific heterogeneity in responses including directional changes in functional composition driven by enhanced performance of drought-tolerant species that inhabit the drier ridges. This article is protected by copyright. All rights reserved.