Publication Search Results

Search Results

Showing 1-16 of about 16 results.
EUV imaging and spectroscopy for improved space weather forecastingGolub, LeonCheimets, PeterDeLuca, Edward E.Madsen, Chad A.Reeves, Katharine K.Samra, JennaSavage, SabrinaWinebarger, AmyBruccoleri, Alexander R.DOI: info:10.1051/swsc/2020040v. 10Article 37
Golub, Leon, Cheimets, Peter, DeLuca, Edward E., Madsen, Chad A., Reeves, Katharine K., Samra, Jenna, Savage, Sabrina, Winebarger, Amy, and Bruccoleri, Alexander R. 2020. "EUV imaging and spectroscopy for improved space weather forecasting." Journal of Space Weather and Space Climate 10:Article 37. https://doi.org/10.1051/swsc/2020040
ID: 157469
Type: article
Authors: Golub, Leon; Cheimets, Peter; DeLuca, Edward E.; Madsen, Chad A.; Reeves, Katharine K.; Samra, Jenna; Savage, Sabrina; Winebarger, Amy; Bruccoleri, Alexander R.
Abstract: Accurate predictions of harmful space weather effects are mandatory for the protection of astronauts and other assets in space, whether in Earth or lunar orbit, in transit between solar system objects, or on the surface of other planetary bodies. Because the corona is multithermal (i.e., structured not only in space but also in temperature), wavelength-separated data provide crucial information that is not available to imaging methods that integrate over temperature. The extreme ultraviolet (EUV) wavelengths enable us to focus directly on high temperature coronal plasma associated with solar flares, coronal mass ejections (CMEs), and shocked material without being overwhelmed by intensity from the solar disk. Both wide-field imaging and spectroscopic observations of the solar corona taken from a variety of orbits (e.g., Earth, L1, or L5) using suitably-chosen EUV instrumentation offer the possibility of addressing two major goals to enhance our space weather prediction capability, namely: (1) Improve our understanding of the coronal conditions that control the opening and closing of the corona to the heliosphere and consequent solar wind streams, and (2) Improve our understanding of the physical processes that control the early evolution of CMEs and the formation of shocks, from the solar surface out into the extended corona.
Solar Eclipse Observations from the Ground and Air from 0.31 to 5.5 MicronsJudge, PhilipBerkey, BenBoll, AlyssaBryans, PaulBurkepile, JoanCheimets, PeterDeLuca, Edwardde Toma, GiulianaGibson, KeonGolub, LeonHannigan, JamesMadsen, ChadMarquez, VanessaRichards, AustinSamra, JennaSewell, ScottTomczyk, StevenVera, AlyshaDOI: info:10.1007/s11207-019-1550-3v. 294166
Judge, Philip, Berkey, Ben, Boll, Alyssa, Bryans, Paul, Burkepile, Joan, Cheimets, Peter, DeLuca, Edward, de Toma, Giuliana, Gibson, Keon, Golub, Leon, Hannigan, James, Madsen, Chad, Marquez, Vanessa, Richards, Austin, Samra, Jenna, Sewell, Scott, Tomczyk, Steven, and Vera, Alysha. 2019. "Solar Eclipse Observations from the Ground and Air from 0.31 to 5.5 Microns." Solar Physics 294:166. https://doi.org/10.1007/s11207-019-1550-3
ID: 154582
Type: article
Authors: Judge, Philip; Berkey, Ben; Boll, Alyssa; Bryans, Paul; Burkepile, Joan; Cheimets, Peter; DeLuca, Edward; de Toma, Giuliana; Gibson, Keon; Golub, Leon; Hannigan, James; Madsen, Chad; Marquez, Vanessa; Richards, Austin; Samra, Jenna; Sewell, Scott; Tomczyk, Steven; Vera, Alysha
Abstract: We present spectra and broad-band polarized light data from a novel suite of instruments deployed during the 21st August 2017 total solar eclipse. Our goals were to survey solar spectra at thermal infrared wavelengths during eclipse, and to test new technology for measuring polarized coronal light. An infrared coronal imaging spectrometer, flown at 14.3 km altitude above Kentucky, was supported on the ground by observations from Madras, Oregon (elevation 683 m) and Camp Wyoba on Casper Mountain, Wyoming (2402 m). In Wyoming we deployed a new infrared Fourier Transform Spectrometer (FTS), three low-dispersion spectrometers loaned to us by Avantes, a novel visible-light camera PolarCam, sensitive to linear polarization, and one of two infrared cameras from FLIR Systems, the other operated at Madras. Circumstances of eclipse demanded that the observations spanned 17:19 to 18:26 UT. We analyze spectra of the limb photosphere, the chromosphere, prominences, and coronal lines from 310 nm to 5.5 μm. We calibrated data photometrically using the solar disk as a source. Between different spectrometers, the calibrations were consistent to better than 13%. But the sensitivities achieved were insufficient to detect coronal lines from the ground. The PolarCam data are in remarkable agreement with polarization data from the K-Cor synoptic instrument on Mauna Loa, and with FLIR intensity data acquired in Madras. We discuss new results, including a detection of the He uc(i) 1083 nm multiplet in emission during the whole of totality. The combination of the FTS and AIR-Spec spectra reveals for the first time the effects of the telluric extinction on the infrared coronal emission lines, to be observed with upcoming Daniel K. Inouye Solar Telescope.
The High-Resolution Coronal Imager, Flight 2.1Rachmeler, Laurel A.Winebarger, Amy R.Savage, Sabrina L.Golub, LeonKobayashi, KenVigil, Genevieve D.Brooks, David H.Cirtain, Jonathan W.De Pontieu, BartMcKenzie, David E.Morton, Richard J.Peter, HardiTesta, PaolaTiwari, Sanjiv K.Walsh, Robert W.Warren, Harry P.Alexander, CarolineAnsell, DarrenBeabout, Brent L.Beabout, Dyana L.Bethge, Christian W.Champey, Patrick R.Cheimets, Peter N.Cooper, Mark A.Creel, Helen K.Gates, RichardGomez, CarlosGuillory, AnthonyHaight, HarlanHogue, William D.Holloway, ToddHyde, David W.Kenyon, RichardMarshall, Joseph N.McCracken, Jeff E.McCracken, KennethMitchell, Karen O.Ordway, MarkOwen, TimRanganathan, JaganRobertson, Bryan A.Payne, M. JaniePodgorski, WilliamPryor, JonathanSamra, JennaSloan, Mark D.Soohoo, Howard A.Steele, D. BrandonThompson, Furman V.Thornton, Gary S.Watkinson, BenjaminWindt, DavidDOI: info:10.1007/s11207-019-1551-2v. 294174
Rachmeler, Laurel A., Winebarger, Amy R., Savage, Sabrina L., Golub, Leon, Kobayashi, Ken, Vigil, Genevieve D., Brooks, David H., Cirtain, Jonathan W., De Pontieu, Bart, McKenzie, David E., Morton, Richard J., Peter, Hardi, Testa, Paola, Tiwari, Sanjiv K., Walsh, Robert W., Warren, Harry P., Alexander, Caroline, Ansell, Darren, Beabout, Brent L., Beabout, Dyana L., Bethge, Christian W., Champey, Patrick R., Cheimets, Peter N., Cooper, Mark A., Creel, Helen K. et al. 2019. "The High-Resolution Coronal Imager, Flight 2.1." Solar Physics 294:174. https://doi.org/10.1007/s11207-019-1551-2
ID: 154524
Type: article
Authors: Rachmeler, Laurel A.; Winebarger, Amy R.; Savage, Sabrina L.; Golub, Leon; Kobayashi, Ken; Vigil, Genevieve D.; Brooks, David H.; Cirtain, Jonathan W.; De Pontieu, Bart; McKenzie, David E.; Morton, Richard J.; Peter, Hardi; Testa, Paola; Tiwari, Sanjiv K.; Walsh, Robert W.; Warren, Harry P.; Alexander, Caroline; Ansell, Darren; Beabout, Brent L.; Beabout, Dyana L.; Bethge, Christian W.; Champey, Patrick R.; Cheimets, Peter N.; Cooper, Mark A.; Creel, Helen K.; Gates, Richard; Gomez, Carlos; Guillory, Anthony; Haight, Harlan; Hogue, William D.; Holloway, Todd; Hyde, David W.; Kenyon, Richard; Marshall, Joseph N.; McCracken, Jeff E.; McCracken, Kenneth; Mitchell, Karen O.; Ordway, Mark; Owen, Tim; Ranganathan, Jagan; Robertson, Bryan A.; Payne, M. Janie; Podgorski, William; Pryor, Jonathan; Samra, Jenna; Sloan, Mark D.; Soohoo, Howard A.; Steele, D. Brandon; Thompson, Furman V.; Thornton, Gary S.; Watkinson, Benjamin; Windt, David
Abstract: The third flight of the High-Resolution Coronal Imager (Hi-C 2.1) occurred on May 29, 2018; the Sounding Rocket was launched from White Sands Missile Range in New Mexico. The instrument has been modified from its original configuration (Hi-C 1) to observe the solar corona in a passband that peaks near 172 Å, and uses a new, custom-built low-noise camera. The instrument targeted Active Region 12712, and captured 78 images at a cadence of 4.4 s (18:56:22 - 19:01:57 UT; 5 min and 35 s observing time). The image spatial resolution varies due to quasi- periodic motion blur from the rocket; sharp images contain resolved features of at least 0.47 arcsec. There are coordinated observations from multiple ground- and space-based telescopes providing an unprecedented opportunity to observe the mass and energy coupling between the chromosphere and the corona. Details of the instrument and the data set are presented in this paper.
Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe PlusKasper, Justin C.Abiad, RobertAustin, GerryBalat-Pichelin, MarianneBale, Stuart D.Belcher, John W.Berg, PeterBergner, HenryBerthomier, MatthieuBookbinder, JayBrodu, EtienneCaldwell, DavidCase, Anthony W.Chandran, Benjamin D. G.Cheimets, PeterCirtain, Jonathan W.Cranmer, Steven R.Curtis, David W.Daigneau, PeterDalton, GregDasgupta, BrahmanandaDeTomaso, DavidDiaz-Aguado, MillanDjordjevic, BlagojeDonaskowski, BillEffinger, MichaelFlorinski, VladimirFox, NicholaFreeman, MarkGallagher, DennisGary, S. PeterGauron, TomGates, RichardGoldstein, MelvinGolub, LeonGordon, Dorothy A.Gurnee, ReidGuth, GioraHalekas, JasperHatch, KenHeerikuisen, JacobHo, GeorgeHu, QiangJohnson, GregJordan, Steven P.Korreck, Kelly E.Larson, DavinLazarus, Alan J.Li, GangLivi, RobertoLudlam, MichaelMaksimovic, MilanMcFadden, James P.Marchant, WilliamMaruca, Bennet A.McComas, David J.Messina, LucianaMercer, TonyPark, SangPeddie, Andrew M.Pogorelov, NikolaiReinhart, Matthew J.Richardson, John D.Robinson, MilesRosen, IreneSkoug, Ruth M.Slagle, AmandaSteinberg, John T.Stevens, Michael L.Szabo, AdamTaylor, Ellen R.Tiu, ChrisTurin, PaulVelli, MarcoWebb, GaryWhittlesey, PhyllisWright, KenWu, S. T.Zank, GaryDOI: info:10.1007/s11214-015-0206-3v. 204131–186
Kasper, Justin C., Abiad, Robert, Austin, Gerry, Balat-Pichelin, Marianne, Bale, Stuart D., Belcher, John W., Berg, Peter, Bergner, Henry, Berthomier, Matthieu, Bookbinder, Jay, Brodu, Etienne, Caldwell, David, Case, Anthony W., Chandran, Benjamin D. G., Cheimets, Peter, Cirtain, Jonathan W., Cranmer, Steven R., Curtis, David W., Daigneau, Peter, Dalton, Greg, Dasgupta, Brahmananda, DeTomaso, David, Diaz-Aguado, Millan, Djordjevic, Blagoje, Donaskowski, Bill et al. 2016. "Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus." Space Science Reviews 204:131– 186. https://doi.org/10.1007/s11214-015-0206-3
ID: 141934
Type: article
Authors: Kasper, Justin C.; Abiad, Robert; Austin, Gerry; Balat-Pichelin, Marianne; Bale, Stuart D.; Belcher, John W.; Berg, Peter; Bergner, Henry; Berthomier, Matthieu; Bookbinder, Jay; Brodu, Etienne; Caldwell, David; Case, Anthony W.; Chandran, Benjamin D. G.; Cheimets, Peter; Cirtain, Jonathan W.; Cranmer, Steven R.; Curtis, David W.; Daigneau, Peter; Dalton, Greg; Dasgupta, Brahmananda; DeTomaso, David; Diaz-Aguado, Millan; Djordjevic, Blagoje; Donaskowski, Bill; Effinger, Michael; Florinski, Vladimir; Fox, Nichola; Freeman, Mark; Gallagher, Dennis; Gary, S. Peter; Gauron, Tom; Gates, Richard; Goldstein, Melvin; Golub, Leon; Gordon, Dorothy A.; Gurnee, Reid; Guth, Giora; Halekas, Jasper; Hatch, Ken; Heerikuisen, Jacob; Ho, George; Hu, Qiang; Johnson, Greg; Jordan, Steven P.; Korreck, Kelly E.; Larson, Davin; Lazarus, Alan J.; Li, Gang; Livi, Roberto; Ludlam, Michael; Maksimovic, Milan; McFadden, James P.; Marchant, William; Maruca, Bennet A.; McComas, David J.; Messina, Luciana; Mercer, Tony; Park, Sang; Peddie, Andrew M.; Pogorelov, Nikolai; Reinhart, Matthew J.; Richardson, John D.; Robinson, Miles; Rosen, Irene; Skoug, Ruth M.; Slagle, Amanda; Steinberg, John T.; Stevens, Michael L.; Szabo, Adam; Taylor, Ellen R.; Tiu, Chris; Turin, Paul; Velli, Marco; Webb, Gary; Whittlesey, Phyllis; Wright, Ken; Wu, S. T.; Zank, Gary
Abstract: The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation on Solar Probe Plus is a four sensor instrument suite that provides complete measurements of the electrons and ionized helium and hydrogen that constitute the bulk of solar wind and coronal plasma. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SPC is a Faraday Cup that looks directly at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). The SPAN-A ion ESA has a time of flight section that enables it to sort particles by their mass/charge ratio, permitting differentiation of ion species. SPAN-A and -B are rotated relative to one another so their broad fields of view combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield and covered by SPC. Observations by SPC and SPAN produce the combined field of view and measurement capabilities required to fulfill the science objectives of SWEAP and Solar Probe Plus. SWEAP measurements, in concert with magnetic and electric fields, energetic particles, and white light contextual imaging will enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, and particle acceleration in the inner heliosphere of the solar system. SPC and SPAN are managed by the SWEAP Electronics Module (SWEM), which distributes power, formats onboard data products, and serves as a single electrical interface to the spacecraft. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution. Full resolution data are stored within the SWEM, enabling high resolution observations of structures such as shocks, reconnection events, and other transient structures to be selected for download after the fact. This paper describes the implementation of the SWEAP Investigation, the driving requirements for the suite, expected performance of the instruments, and planned data products, as of mission preliminary design review.
Performance testing of an off-plane reflection grating and silicon pore optic spectrograph at PANTERMarlowe, HannahMcEntaffer, Randall L.Allured, RyanDeRoo, Casey T.Donovan, Benjamin D.Miles, Drew M.Tutt, James H.Burwitz, VadimMenz, BenediktHartner, Gisela D.Smith, Randall K.Cheimets, PeterHertz, EdwardBookbinder, Jay A.Günther, RamsesYanson, AlexVacanti, GiuseppeAckermann, MarceloDOI: info:10.1117/1.JATIS.1.4.045004v. 1045004
Marlowe, Hannah, McEntaffer, Randall L., Allured, Ryan, DeRoo, Casey T., Donovan, Benjamin D., Miles, Drew M., Tutt, James H., Burwitz, Vadim, Menz, Benedikt, Hartner, Gisela D., Smith, Randall K., Cheimets, Peter, Hertz, Edward, Bookbinder, Jay A., Günther, Ramses, Yanson, Alex, Vacanti, Giuseppe, and Ackermann, Marcelo. 2015. "Performance testing of an off-plane reflection grating and silicon pore optic spectrograph at PANTER." Journal of Astronomical Telescopes, Instruments, and Systems 1:045004. https://doi.org/10.1117/1.JATIS.1.4.045004
ID: 140569
Type: article
Authors: Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey T.; Donovan, Benjamin D.; Miles, Drew M.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Cheimets, Peter; Hertz, Edward; Bookbinder, Jay A.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo
Abstract: An x-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for Extraterrestrial Physics PANTER x-ray test facility. SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with an SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.
The Interface Region Imaging Spectrograph (IRIS)De Pontieu, B.Title, A. M.Lemen, J. R.Kushner, G. D.Akin, D. J.Allard, B.Berger, T.Boerner, P.Cheung, M.Chou, C.Drake, J. F.Duncan, D. W.Freeland, S.Heyman, G. F.Hoffman, C.Hurlburt, N. E.Lindgren, R. W.Mathur, D.Rehse, R.Sabolish, D.Seguin, R.Schrijver, C. J.Tarbell, T. D.Wülser, J. -PWolfson, C. J.Yanari, C.Mudge, J.Nguyen-Phuc, N.Timmons, R.van Bezooijen, R.Weingrod, I.Brookner, R.Butcher, G.Dougherty, B.Eder, J.Knagenhjelm, V.Larsen, S.Mansir, D.Phan, L.Boyle, P.Cheimets, P. N.DeLuca, Edward E.Golub, L.Gates, R.Hertz, E.McKillop, S.Park, S.Perry, T.Podgorski, W. A.Reeves, Katharine K.Saar, S.Testa, P.Tian, H.Weber, Mark A.Dunn, C.Eccles, S.Jaeggli, S. A.Kankelborg, C. C.Mashburn, K.Pust, N.Springer, L.Carvalho, R.Kleint, L.Marmie, J.Mazmanian, E.Pereira, T. M. D.Sawyer, S.Strong, J.Worden, S. P.Carlsson, M.Hansteen, V. H.Leenaarts, J.Wiesmann, M.Aloise, J.Chu, K. -CBush, R. I.Scherrer, P. H.Brekke, P.Martinez-Sykora, J.Lites, B. W.McIntosh, S. W.Uitenbroek, H.Okamoto, T. J.Gummin, M. A.Auker, G.Jerram, P.Pool, P.Waltham, N.DOI: info:10.1007/s11207-014-0485-yv. 2892733–2779
De Pontieu, B., Title, A. M., Lemen, J. R., Kushner, G. D., Akin, D. J., Allard, B., Berger, T., Boerner, P., Cheung, M., Chou, C., Drake, J. F., Duncan, D. W., Freeland, S., Heyman, G. F., Hoffman, C., Hurlburt, N. E., Lindgren, R. W., Mathur, D., Rehse, R., Sabolish, D., Seguin, R., Schrijver, C. J., Tarbell, T. D., Wülser, J. -P, Wolfson, C. J. et al. 2014. "The Interface Region Imaging Spectrograph (IRIS)." Solar Physics 289:2733– 2779. https://doi.org/10.1007/s11207-014-0485-y
ID: 127623
Type: article
Authors: De Pontieu, B.; Title, A. M.; Lemen, J. R.; Kushner, G. D.; Akin, D. J.; Allard, B.; Berger, T.; Boerner, P.; Cheung, M.; Chou, C.; Drake, J. F.; Duncan, D. W.; Freeland, S.; Heyman, G. F.; Hoffman, C.; Hurlburt, N. E.; Lindgren, R. W.; Mathur, D.; Rehse, R.; Sabolish, D.; Seguin, R.; Schrijver, C. J.; Tarbell, T. D.; Wülser, J. -P; Wolfson, C. J.; Yanari, C.; Mudge, J.; Nguyen-Phuc, N.; Timmons, R.; van Bezooijen, R.; Weingrod, I.; Brookner, R.; Butcher, G.; Dougherty, B.; Eder, J.; Knagenhjelm, V.; Larsen, S.; Mansir, D.; Phan, L.; Boyle, P.; Cheimets, P. N.; DeLuca, Edward E.; Golub, L.; Gates, R.; Hertz, E.; McKillop, S.; Park, S.; Perry, T.; Podgorski, W. A.; Reeves, Katharine K.; Saar, S.; Testa, P.; Tian, H.; Weber, Mark A.; Dunn, C.; Eccles, S.; Jaeggli, S. A.; Kankelborg, C. C.; Mashburn, K.; Pust, N.; Springer, L.; Carvalho, R.; Kleint, L.; Marmie, J.; Mazmanian, E.; Pereira, T. M. D.; Sawyer, S.; Strong, J.; Worden, S. P.; Carlsson, M.; Hansteen, V. H.; Leenaarts, J.; Wiesmann, M.; Aloise, J.; Chu, K. -C; Bush, R. I.; Scherrer, P. H.; Brekke, P.; Martinez-Sykora, J.; Lites, B. W.; McIntosh, S. W.; Uitenbroek, H.; Okamoto, T. J.; Gummin, M. A.; Auker, G.; Jerram, P.; Pool, P.; Waltham, N.
Abstract: The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft provides simultaneous spectra and images of the photosphere, chromosphere, transition region, and corona with 0.33 - 0.4 arcsec spatial resolution, two-second temporal resolution, and 1 km s-1 velocity resolution over a field-of-view of up to 175 arcsec × 175 arcsec. IRIS was launched into a Sun-synchronous orbit on 27 June 2013 using a Pegasus-XL rocket and consists of a 19-cm
The High-Resolution Coronal Imager (Hi-C)Kobayashi, KenCirtain, JonathanWinebarger, Amy R.Korreck, KellyGolub, LeonWalsh, Robert W.De Pontieu, BartDeForest, CraigTitle, AlanKuzin, SergeySavage, SabrinaBeabout, DyanaBeabout, BrentPodgorski, WilliamCaldwell, DavidMcCracken, KennethOrdway, MarkBergner, HenryGates, RichardMcKillop, SeanCheimets, PeterPlatt, SimonMitchell, NickWindt, DavidDOI: info:10.1007/s11207-014-0544-4v. 2894393–4412
Kobayashi, Ken, Cirtain, Jonathan, Winebarger, Amy R., Korreck, Kelly, Golub, Leon, Walsh, Robert W., De Pontieu, Bart, DeForest, Craig, Title, Alan, Kuzin, Sergey, Savage, Sabrina, Beabout, Dyana, Beabout, Brent, Podgorski, William, Caldwell, David, McCracken, Kenneth, Ordway, Mark, Bergner, Henry, Gates, Richard, McKillop, Sean, Cheimets, Peter, Platt, Simon, Mitchell, Nick, and Windt, David. 2014. "The High-Resolution Coronal Imager (Hi-C)." Solar Physics 289:4393– 4412. https://doi.org/10.1007/s11207-014-0544-4
ID: 133157
Type: article
Authors: Kobayashi, Ken; Cirtain, Jonathan; Winebarger, Amy R.; Korreck, Kelly; Golub, Leon; Walsh, Robert W.; De Pontieu, Bart; DeForest, Craig; Title, Alan; Kuzin, Sergey; Savage, Sabrina; Beabout, Dyana; Beabout, Brent; Podgorski, William; Caldwell, David; McCracken, Kenneth; Ordway, Mark; Bergner, Henry; Gates, Richard; McKillop, Sean; Cheimets, Peter; Platt, Simon; Mitchell, Nick; Windt, David
Abstract: The High-Resolution Coronal Imager (Hi-C) was flown on a NASA sounding rocket on 11 July 2012. The goal of the Hi-C mission was to obtain high-resolution (˜ 0.3 - 0.4''), high-cadence (˜ 5 seconds) images of a solar active region to investigate the dynamics of solar coronal structures at small spatial scales. The instrument consists of a normal-incidence telescope with the optics coated with multilayers to reflect a narrow wavelength range around 19.3 nm (including the Fe xii 19.5-nm spectral line) and a 4096×4096 camera with a plate scale of 0.1'' pixel-1. The target of the Hi-C rocket flight was Active Region 11520. Hi-C obtained 37 full-frame images and 86 partial-frame images during the rocket flight. Analysis of the Hi-C data indicates the corona is structured on scales smaller than currently resolved by existing satellite missions.
The design, development, and implementation of a solar environmental simulator (SES) for the SAO Faraday Cup on Solar Probe PlusCheimets, PeterBookbinder, JayFreeman, MarkGates, RichardGauron, ThomasGuth, GioraKasper, JustinMcCracken, KennethPodgorski, WilliamDOI: info:10.1117/12.2024051v. 8862
Cheimets, Peter, Bookbinder, Jay, Freeman, Mark, Gates, Richard, Gauron, Thomas, Guth, Giora, Kasper, Justin, McCracken, Kenneth, and Podgorski, William. 2013. "The design, development, and implementation of a solar environmental simulator (SES) for the SAO Faraday Cup on Solar Probe Plus." In , , https://doi.org/10.1117/12.2024051
Design, analysis, and performance verification of the interface region imaging spectrograph (IRIS) telescope primary mirror assemblyHertz, Edward N.Cheimets, Peter N.Podgorski, William A.Perry, ThomasPark, Sang C.Bergner, Henry W.Gates, RichardMarquez, VanessaHonsa, Michael F.DOI: info:10.1117/12.925484v. 8443
Hertz, Edward N., Cheimets, Peter N., Podgorski, William A., Perry, Thomas, Park, Sang C., Bergner, Henry W., Gates, Richard, Marquez, Vanessa, and Honsa, Michael F. 2012. "Design, analysis, and performance verification of the interface region imaging spectrograph (IRIS) telescope primary mirror assembly." Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 8443:https://doi.org/10.1117/12.925484
ID: 115739
Type: article
Authors: Hertz, Edward N.; Cheimets, Peter N.; Podgorski, William A.; Perry, Thomas; Park, Sang C.; Bergner, Henry W.; Gates, Richard; Marquez, Vanessa; Honsa, Michael F.
Abstract: We discuss the details of the Interface Region Imaging Spectrograph (IRIS) telescope primary mirror assembly designcompared to its predecessor used in the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO-AIA) telescopes. Also included are details of the structural modeling and analysis, mirror optical surface modeling, vibration analysis, and a detailed description of the optical performance verification test program and results.The primary mirror assembly of the IRIS telescope was adapted from an existing design used on the SDO-AIA telescopes. The IRIS telescope was optimized for performance at 1369Å and 2810Å with a required 0.4 arc-second-resolution calling for a significant improvement to the mounted mirror optical surface quality over the existing SDOAIA design.To improve the optical performance, the proven bonded flexure heritage design was augmented with a novel "kinematic" mount used to secure the assembly to the telescope tube. The 200mm diameter concave mirror was fabricated from Corning ULE/RE Code 7973 EUV Premium Grade, Ultra Low Expansion Glass material and polished to better than 12ÅRMS surface roughness. The mirror is supported by three bonded titanium flexures fastened to a rigid titanium cell plate.A 25Å RMS figure error was allocated in the error budget for the mounted, coated primary mirror. The first moderesonance for the mirror was specified to be <100 Hz while surviving an expected launch load of 30G's. The mirrorassembly was designed to operate from +14°C to +26°C with survival limits specified at -20°C to +35°C.
Thermal design of interface region imaging spectrograph (IRIS) ULE primary mirrorPark, Sang C.Yanari, Carl H.Cheimets, Peter N.Podgorski, William A.Wuelser, Jean-PierreDOI: info:10.1117/12.925486v. 8443
Park, Sang C., Yanari, Carl H., Cheimets, Peter N., Podgorski, William A., and Wuelser, Jean-Pierre. 2012. "Thermal design of interface region imaging spectrograph (IRIS) ULE primary mirror." Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 8443:https://doi.org/10.1117/12.925486
ID: 115740
Type: article
Authors: Park, Sang C.; Yanari, Carl H.; Cheimets, Peter N.; Podgorski, William A.; Wuelser, Jean-Pierre
Abstract: This paper presents the overall thermal design of the Interface Region Imaging Spectrograph (IRIS) telescope with focused descriptions of the primary mirror thermal design, telescope active thermal control system, ULE® mirror substrate thermal properties, and the thermal math model supporting the thermal design. The challenge of the IRIS primary mirror thermal design was to manage the un-filtered solar flux that directly impinges on the optical substrate, while maintaining the mirror within a narrow range of temperatures throughout the mission life. This thermal problem is compounded by a change in the absorption properties of ULE over time, due to UV light.
Minimizing the mirror distortion for subarcsecond imaging in the Hi-C EUV telescopePodgorski, William A.Caldwell, DavidMcCracken, KennethOrdway, Mark P.Cheimets, Peter N.Korreck, KellyGolub, LeonCirtain, JonathanKobayashi, KenDOI: info:10.1117/12.930610v. 8502
Podgorski, William A., Caldwell, David, McCracken, Kenneth, Ordway, Mark P., Cheimets, Peter N., Korreck, Kelly, Golub, Leon, Cirtain, Jonathan, and Kobayashi, Ken. 2012. "Minimizing the mirror distortion for subarcsecond imaging in the Hi-C EUV telescope." Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 8502:https://doi.org/10.1117/12.930610
ID: 115719
Type: article
Authors: Podgorski, William A.; Caldwell, David; McCracken, Kenneth; Ordway, Mark P.; Cheimets, Peter N.; Korreck, Kelly; Golub, Leon; Cirtain, Jonathan; Kobayashi, Ken
Abstract: NASA/MSFC and SAO have developed a High Resolution EUV Solar Coronal Imaging telescope (Hi-C). The scientific objective of the mission is to determine, at higher spatial resolution than previously available, the geometric configuration and topology of the structures making up the inner corona. The Hi-C telescope launched on a rocket in early July 2012. It acts as a technology pathfinder for future satellite based missions. Key technology features of the Hi-C telescope are: (1) A 23.9 meter focal length, allowing for 0.1 arc-second pixels (2) Extremely high quality optics (3) Single wavelength multi-layer coating over the entire surface of each optic (4) Low distortion approach to mounting the primary into the telescope. The low distortion approach to mounting the primary mirror into the telescope is discussed in this paper. In previous solar EUV telescopes (TRACE, AIA, IRIS) the primary mirror is first bonded into a flexured mirror cell that is then bolted into the telescope. Techniques for bonding the mirror into the mirror cell have been well developed. If done properly, these techniques produce minimal distortion in the optic. Experience has shown, however, that bolting of the cell into the telescope produces distortions, typically in the form of astigmatism. The magnitude of the astigmatism may be acceptable for lower resolution missions, but as we approach ever higher resolutions, these astigmatisms contribute significantly to the error budget. In the Hi-C mission the mirror mounting hardware was completely assembled into the telescope tube prior to bonding the mirror to the mount. This final operation was done with the telescope tube vertical and the primary mirror surface facing up. This approach minimizes the "bolt-up" distortions typically seen, thus improving resolution.
Design, performance prediction, and measurements of the interface region imaging spectrograph (IRIS) telescopePodgorski, William A.Cheimets, Peter N.Golub, LeonLemen, James R.Title, Alan M.DOI: info:10.1117/12.925491v. 8443
Podgorski, William A., Cheimets, Peter N., Golub, Leon, Lemen, James R., and Title, Alan M. 2012. "Design, performance prediction, and measurements of the interface region imaging spectrograph (IRIS) telescope." Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 8443:https://doi.org/10.1117/12.925491
ID: 115699
Type: article
Authors: Podgorski, William A.; Cheimets, Peter N.; Golub, Leon; Lemen, James R.; Title, Alan M.
Abstract: This paper discusses the design of the IRIS Small Explorer (SMEX) Cassegrain telescope, as well as its intended and measured performance. Lockheed Martin, along with SAO, Montana State University, and Stanford University are developing the IRIS instrument for a mission to examine the solar spectra in two bands, one centered on 1369 Å, and the other centered on 2810 Å. SAO led the design and construction of the telescope feed, with assistance from Lockheed and Montana State University. The telescope posed a number of implementation challenges, which are discussed here, including the fact that no effective filters exist to isolate the science spectra to the exclusion of the rest of the solar flux, making it necessary to allow full sunlight into the telescope.
Hectochelle: A Multiobject Optical Echelle Spectrograph for the MMTSzentgyorgyi, Andrew H.Furesz, GaborCheimets, PeterConroy, MaureenEng, RogerFabricant, DanielFata, RobertGauron, ThomasGeary, JohnMcLeod, Brian A.Zajac, JosephAmato, StephenBergner, HenryCaldwell, NelsonDupree, AndreaGoddard, RichardJohnston, EverettMeibom, SørenMink, DouglasPieri, MarioRoll, JohnTokarz, SusanWyatt, WilliamEpps, HarlandHartmann, LeeMeszaros, SzabolczDOI: info:10.1086/662209v. 1231188–1209
Szentgyorgyi, Andrew H., Furesz, Gabor, Cheimets, Peter, Conroy, Maureen, Eng, Roger, Fabricant, Daniel, Fata, Robert, Gauron, Thomas, Geary, John, McLeod, Brian A., Zajac, Joseph, Amato, Stephen, Bergner, Henry, Caldwell, Nelson, Dupree, Andrea, Goddard, Richard, Johnston, Everett, Meibom, Søren, Mink, Douglas, Pieri, Mario, Roll, John, Tokarz, Susan, Wyatt, William, Epps, Harland, Hartmann, Lee et al. 2011. "Hectochelle: A Multiobject Optical Echelle Spectrograph for the MMT." Publications of the Astronomical Society of the Pacific 123:1188– 1209. https://doi.org/10.1086/662209
ID: 108030
Type: article
Authors: Szentgyorgyi, Andrew H.; Furesz, Gabor; Cheimets, Peter; Conroy, Maureen; Eng, Roger; Fabricant, Daniel; Fata, Robert; Gauron, Thomas; Geary, John; McLeod, Brian A.; Zajac, Joseph; Amato, Stephen; Bergner, Henry; Caldwell, Nelson; Dupree, Andrea; Goddard, Richard; Johnston, Everett; Meibom, Søren; Mink, Douglas; Pieri, Mario; Roll, John; Tokarz, Susan; Wyatt, William; Epps, Harland; Hartmann, Lee; Meszaros, Szabolcz
Abstract: The Hectochelle is an optical band, fiber-fed, multiobject echelle spectrograph deployed at the MMT Observatory on Mount Hopkins, Arizona. The optical fibers that feed the Hectochelle are positioned by the Hectospec robot positioner on the MMT f/5 focal surface, and the Hectochelle shares an optical fiber feed system with the Hectospec, a moderate-dispersion spectrograph that is collocated with the Hectochelle. Hectochelle can record up to 240 spectra simultaneously at a resolution of 38,000. Spectra cover a single diffractive order that is approximately 150 Å wide. The total potential operating passband
The Hinode X-Ray Telescope (XRT): Camera Design, Performance and OperationsKano, R.Sakao, T.Hara, H.Tsuneta, S.Matsuzaki, K.Kumagai, K.Shimojo, M.Minesugi, K.Shibasaki, K.DeLuca, Edward E.Golub, LeonBookbinder, Jay A.Caldwell, D.Cheimets, P.Cirtain, J.Dennis, E.Kent, T.Weber, Mark A.v. 249263–279
Kano, R., Sakao, T., Hara, H., Tsuneta, S., Matsuzaki, K., Kumagai, K., Shimojo, M., Minesugi, K., Shibasaki, K., DeLuca, Edward E., Golub, Leon, Bookbinder, Jay A., Caldwell, D., Cheimets, P., Cirtain, J., Dennis, E., Kent, T., and Weber, Mark A. 2008. "The Hinode X-Ray Telescope (XRT): Camera Design, Performance and Operations." Solar Physics 249:263– 279.
ID: 71821
Type: article
Authors: Kano, R.; Sakao, T.; Hara, H.; Tsuneta, S.; Matsuzaki, K.; Kumagai, K.; Shimojo, M.; Minesugi, K.; Shibasaki, K.; DeLuca, Edward E.; Golub, Leon; Bookbinder, Jay A.; Caldwell, D.; Cheimets, P.; Cirtain, J.; Dennis, E.; Kent, T.; Weber, Mark A.
The X-Ray Telescope (XRT) for the Hinode MissionGolub, LeonDeLuca, Edward E.Austin, G.Bookbinder, Jay A.Caldwell, D.Cheimets, P.Cirtain, J.Cosmo, M.Reid, P.Sette, A.Weber, Mark A.Sakao, T.Kano, R.Shibasaki, K.Hara, H.Tsuneta, S.Kumagai, K.Tamura, T.Shimojo, M.McCracken, J.Carpenter, J.Haight, H.Siler, R.Wright, E.Tucker, J.Rutledge, H.Barbera, M.Peres, G.Varisco, S.v. 24363–86
Golub, Leon, DeLuca, Edward E., Austin, G., Bookbinder, Jay A., Caldwell, D., Cheimets, P., Cirtain, J., Cosmo, M., Reid, P., Sette, A., Weber, Mark A., Sakao, T., Kano, R., Shibasaki, K., Hara, H., Tsuneta, S., Kumagai, K., Tamura, T., Shimojo, M., McCracken, J., Carpenter, J., Haight, H., Siler, R., Wright, E., Tucker, J. et al. 2007. "The X-Ray Telescope (XRT) for the Hinode Mission." Solar Physics 243:63– 86.
ID: 55038
Type: article
Authors: Golub, Leon; DeLuca, Edward E.; Austin, G.; Bookbinder, Jay A.; Caldwell, D.; Cheimets, P.; Cirtain, J.; Cosmo, M.; Reid, P.; Sette, A.; Weber, Mark A.; Sakao, T.; Kano, R.; Shibasaki, K.; Hara, H.; Tsuneta, S.; Kumagai, K.; Tamura, T.; Shimojo, M.; McCracken, J.; Carpenter, J.; Haight, H.; Siler, R.; Wright, E.; Tucker, J.; Rutledge, H.; Barbera, M.; Peres, G.; Varisco, S.
Testing the Principle of Equivalence in AN Einstein ElevatorShapiro, IrwinLorenzini, E. C.Ashenberg, J.Bombardelli, ClaudioCheimets, P. N.Iafolla, V.Lucchesi, D. M.Nozzoli, S.Santoli, F.Glashow, S.v. 162227–2243
Shapiro, Irwin, Lorenzini, E. C., Ashenberg, J., Bombardelli, Claudio, Cheimets, P. N., Iafolla, V., Lucchesi, D. M., Nozzoli, S., Santoli, F., and Glashow, S. 2007. "Testing the Principle of Equivalence in AN Einstein Elevator." International Journal of Modern Physics D 16:2227– 2243.
ID: 55075
Type: article
Authors: Shapiro, Irwin; Lorenzini, E. C.; Ashenberg, J.; Bombardelli, Claudio; Cheimets, P. N.; Iafolla, V.; Lucchesi, D. M.; Nozzoli, S.; Santoli, F.; Glashow, S.