Publication Search Results

Search Results

Showing 1-12 of about 12 results.
Microwave Multiplexing on the Keck ArrayCukierman, A.Ahmed, Z.Henderson, S.Young, E.Yu, C.Barkats, DenisBrown, D.Chaudhuri, S.Cornelison, J.D'Ewart, J. M.Dierickx, MarionDober, B. J.Dusatko, J.Fatigoni, S.Filippini, J. P.Frisch, J. C.Haller, G.Halpern, M.Hilton, G. C.Hubmayr, J.Irwin, K. D.Karkare, K. S.Karpel, E.Kernasovskiy, S. A.Kovac, J. M.Kovacs, AttilaKuenstner, S. E.Kuo, C. L.Li, D.Mates, J. A. B.Smith, S.St. Germaine, T.Ullom, J. N.Vale, L. R.Van Winkle, D. D.Vasquez, J.Willmert, J.Zeng, L.Ade, P. A. R.Amiri, M.Basu Thakur, R.Bischoff, C. A.Bock, J. J.Boenish, H.Bullock, E.Buza, V.Cheshire, J.Connors, J.Crumrine, M.Duband, L.Hall, G.Harrison, S.Hildebrandt, S. R.Hui, H.Kang, J.Kefeli, S.Lau, K.Megerian, K. G.Moncelsi, L.Namikawa, T.Nguyen, H. T.O'Brient, R.Palladino, S.Pryke, C.Racine, B.Reintsema, C. D.Richter, S.Schillaci, A.Schwarz, R.Sheehy, C. D.Soliman, A.Steinbach, B.Sudiwala, R. V.Thompson, K. L.Tucker, C.Turner, A. D.Umiltà, C.Vieregg, A. G.Wandui, A.Weber, A. C.Wiebe, D. V.Wu, W. L. K.Yang, H.Yoon, K. W.Zhang, C.DOI: info:10.1007/s10909-019-02296-2v. 199858–866
Cukierman, A., Ahmed, Z., Henderson, S., Young, E., Yu, C., Barkats, Denis, Brown, D., Chaudhuri, S., Cornelison, J., D'Ewart, J. M., Dierickx, Marion, Dober, B. J., Dusatko, J., Fatigoni, S., Filippini, J. P., Frisch, J. C., Haller, G., Halpern, M., Hilton, G. C., Hubmayr, J., Irwin, K. D., Karkare, K. S., Karpel, E., Kernasovskiy, S. A., Kovac, J. M. et al. 2020. "Microwave Multiplexing on the Keck Array." Journal of Low Temperature Physics 199:858– 866.
ID: 158085
Type: article
Authors: Cukierman, A.; Ahmed, Z.; Henderson, S.; Young, E.; Yu, C.; Barkats, Denis; Brown, D.; Chaudhuri, S.; Cornelison, J.; D'Ewart, J. M.; Dierickx, Marion; Dober, B. J.; Dusatko, J.; Fatigoni, S.; Filippini, J. P.; Frisch, J. C.; Haller, G.; Halpern, M.; Hilton, G. C.; Hubmayr, J.; Irwin, K. D.; Karkare, K. S.; Karpel, E.; Kernasovskiy, S. A.; Kovac, J. M.; Kovacs, Attila; Kuenstner, S. E.; Kuo, C. L.; Li, D.; Mates, J. A. B.; Smith, S.; St. Germaine, T.; Ullom, J. N.; Vale, L. R.; Van Winkle, D. D.; Vasquez, J.; Willmert, J.; Zeng, L.; Ade, P. A. R.; Amiri, M.; Basu Thakur, R.; Bischoff, C. A.; Bock, J. J.; Boenish, H.; Bullock, E.; Buza, V.; Cheshire, J.; Connors, J.; Crumrine, M.; Duband, L.; Hall, G.; Harrison, S.; Hildebrandt, S. R.; Hui, H.; Kang, J.; Kefeli, S.; Lau, K.; Megerian, K. G.; Moncelsi, L.; Namikawa, T.; Nguyen, H. T.; O'Brient, R.; Palladino, S.; Pryke, C.; Racine, B.; Reintsema, C. D.; Richter, S.; Schillaci, A.; Schwarz, R.; Sheehy, C. D.; Soliman, A.; Steinbach, B.; Sudiwala, R. V.; Thompson, K. L.; Tucker, C.; Turner, A. D.; Umiltà, C.; Vieregg, A. G.; Wandui, A.; Weber, A. C.; Wiebe, D. V.; Wu, W. L. K.; Yang, H.; Yoon, K. W.; Zhang, C.
Abstract: We describe an on-sky demonstration of a microwave-multiplexing readout system in one of the receivers of the Keck Array, a polarimetry experiment observing the cosmic microwave background at the South Pole. During the austral summer of 2018-2019, we replaced the time-division multiplexing readout system with microwave-multiplexing components including superconducting microwave resonators coupled to radio-frequency superconducting quantum interference devices at the sub-Kelvin focal plane, coaxial-cable plumbing and amplification between room temperature and the cold stages, and a SLAC Microresonator Radio Frequency system for the warm electronics. In the range 5-6 GHz, a single coaxial cable reads out 528 channels. The readout system is coupled to transition-edge sensors, which are in turn coupled to 150-GHz slot-dipole phased-array antennas. Observations began in April 2019, and we report here on an initial characterization of the system performance.
Dark Energy Survey year 1 results: the relationship between mass and light around cosmic voidsFang, Y.Hamaus, N.Jain, B.Pandey, S.Pollina, G.Sánchez, C.Kovács, A.Chang, C.Carretero, J.Castander, F. J.Choi, A.Crocce, M.DeRose, J.Fosalba, P.Gatti, M.Gaztañaga, E.Gruen, D.Hartley, W. G.Hoyle, B.MacCrann, N.Prat, J.Rau, M. M.Rykoff, E. S.Samuroff, S.Sheldon, E.Troxel, M. A.Vielzeuf, P.Zuntz, J.Annis, J.Avila, S.Bertin, E.Brooks, D.Burke, D. L.Carnero Rosell, A.Carrasco Kind, M.Cawthon, R.da Costa, L. N.De Vicente, J.Desai, S.Diehl, H. T.Dietrich, J. P.Doel, P.Everett, S.Evrard, A. E.Flaugher, B.Frieman, J.García-Bellido, J.Gerdes, D. W.Gruendl, R. A.Gutierrez, G.Hollowood, D. L.James, David J.Jarvis, M.Kuropatkin, N.Lahav, O.Maia, M. A. G.Marshall, J. L.Melchior, P.Menanteau, F.Miquel, R.Palmese, A.Plazas, A. A.Romer, A. K.Roodman, A.Sanchez, E.Serrano, S.Sevilla-Noarbe, I.Smith, M.Soares-Santos, M.Sobreira, F.Suchyta, E.Swanson, M. E. C.Tarle, G.Thomas, D.Vikram, V.Walker, A. R.Weller, J.DES CollaborationDOI: info:10.1093/mnras/stz2805v. 4903573–3587
Fang, Y., Hamaus, N., Jain, B., Pandey, S., Pollina, G., Sánchez, C., Kovács, A., Chang, C., Carretero, J., Castander, F. J., Choi, A., Crocce, M., DeRose, J., Fosalba, P., Gatti, M., Gaztañaga, E., Gruen, D., Hartley, W. G., Hoyle, B., MacCrann, N., Prat, J., Rau, M. M., Rykoff, E. S., Samuroff, S., Sheldon, E. et al. 2019. "Dark Energy Survey year 1 results: the relationship between mass and light around cosmic voids." Monthly Notices of the Royal Astronomical Society 490:3573– 3587.
ID: 154517
Type: article
Authors: Fang, Y.; Hamaus, N.; Jain, B.; Pandey, S.; Pollina, G.; Sánchez, C.; Kovács, A.; Chang, C.; Carretero, J.; Castander, F. J.; Choi, A.; Crocce, M.; DeRose, J.; Fosalba, P.; Gatti, M.; Gaztañaga, E.; Gruen, D.; Hartley, W. G.; Hoyle, B.; MacCrann, N.; Prat, J.; Rau, M. M.; Rykoff, E. S.; Samuroff, S.; Sheldon, E.; Troxel, M. A.; Vielzeuf, P.; Zuntz, J.; Annis, J.; Avila, S.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Cawthon, R.; da Costa, L. N.; De Vicente, J.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Everett, S.; Evrard, A. E.; Flaugher, B.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Hollowood, D. L.; James, David J.; Jarvis, M.; Kuropatkin, N.; Lahav, O.; Maia, M. A. G.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Palmese, A.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Serrano, S.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Weller, J.; DES Collaboration
Abstract: What are the mass and galaxy profiles of cosmic voids? In this paper, we use two methods to extract voids in the Dark Energy Survey (DES) Year 1 redMaGiC galaxy sample to address this question. We use either 2D slices in projection, or the 3D distribution of galaxies based on photometric redshifts to identify voids. For the mass profile, we measure the tangential shear profiles of background galaxies to infer the excess surface mass density. The signal-to-noise ratio for our lensing measurement ranges between 10.7 and 14.0 for the two void samples. We infer their 3D density profiles by fitting models based on N-body simulations and find good agreement for void radii in the range 15-85 Mpc. Comparison with their galaxy profiles then allows us to test the relation between mass and light at the 10 per cent level, the most stringent test to date. We find very similar shapes for the two profiles, consistent with a linear relationship between mass and light both within and outside the void radius. We validate our analysis with the help of simulated mock catalogues and estimate the impact of photometric redshift uncertainties on the measurement. Our methodology can be used for cosmological applications, including tests of gravity with voids. This is especially promising when the lensing profiles are combined with spectroscopic measurements of void dynamics via redshift- space distortions.
More out of less: an excess integrated Sachs-Wolfe signal from supervoids mapped out by the Dark Energy SurveyKovács, A.Sánchez, C.García-Bellido, J.Elvin-Poole, J.Hamaus, N.Miranda, V.Nadathur, S.Abbott, T.Abdalla, F. B.Annis, J.Avila, S.Bertin, E.Brooks, D.Burke, D. L.Carnero Rosell, A.Carrasco Kind, M.Carretero, J.Cawthon, R.Crocce, M.Cunha, C.da Costa, L. N.Davis, C.De Vicente, J.DePoy, D.Desai, S.Diehl, H. T.Doel, P.Fernandez, E.Flaugher, B.Fosalba, P.Frieman, J.Gaztañaga, E.Gerdes, D.Gruendl, R.Gutierrez, G.Hartley, W.Hollowood, D. L.Honscheid, K.Hoyle, B.James, David J.Krause, E.Kuehn, K.Kuropatkin, N.Lahav, O.Lima, M.Maia, M.March, M.Marshall, J.Melchior, P.Menanteau, F.Miller, C. J.Miquel, R.Mohr, J.Plazas, A. A.Romer, K.Rykoff, E.Sanchez, E.Scarpine, V.Schindler, R.Schubnell, M.Sevilla-Noarbe, I.Smith, M.Smith, R. C.Soares-Santos, M.Sobreira, F.Suchyta, E.Swanson, M.Tarle, G.Thomas, D.Vikram, V.Weller, J.DOI: info:10.1093/mnras/stz341v. 4845267–5277
Kovács, A., Sánchez, C., García-Bellido, J., Elvin-Poole, J., Hamaus, N., Miranda, V., Nadathur, S., Abbott, T., Abdalla, F. B., Annis, J., Avila, S., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cawthon, R., Crocce, M., Cunha, C., da Costa, L. N., Davis, C., De Vicente, J., DePoy, D., Desai, S. et al. 2019. "More out of less: an excess integrated Sachs-Wolfe signal from supervoids mapped out by the Dark Energy Survey." Monthly Notices of the Royal Astronomical Society 484:5267– 5277.
ID: 151200
Type: article
Authors: Kovács, A.; Sánchez, C.; García-Bellido, J.; Elvin-Poole, J.; Hamaus, N.; Miranda, V.; Nadathur, S.; Abbott, T.; Abdalla, F. B.; Annis, J.; Avila, S.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cawthon, R.; Crocce, M.; Cunha, C.; da Costa, L. N.; Davis, C.; De Vicente, J.; DePoy, D.; Desai, S.; Diehl, H. T.; Doel, P.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztañaga, E.; Gerdes, D.; Gruendl, R.; Gutierrez, G.; Hartley, W.; Hollowood, D. L.; Honscheid, K.; Hoyle, B.; James, David J.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M.; March, M.; Marshall, J.; Melchior, P.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J.; Plazas, A. A.; Romer, K.; Rykoff, E.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M.; Tarle, G.; Thomas, D.; Vikram, V.; Weller, J.
Abstract: The largest structures in the cosmic web probe the dynamical nature of dark energy through their integrated Sachs-Wolfe imprints. In the strength of the signal, typical cosmic voids have shown good consistency with expectation AISW = ΔTdata/ΔTtheory = 1, given the substantial cosmic variance. Discordantly, large-scale hills in the gravitational potential, or supervoids, have shown excess signals. In this study, we mapped out 87 new supervoids in the total 5000 deg2 footprint of the Dark Energy Survey at 0.2 footprint of the Dark Energy Survey at 0.2 footprint of the Dark Energy Survey at 0.2 ISW ≈ 4.1 ± 2.0 amplitude. The combination with independent BOSS data reveals an ISW imprint of supervoids at the 3.3σ significance level with an enhanced AISW ≈ 5.2 ± 1.6 amplitude. The tension with ΛCDM predictions is equivalent to 2.6σ and remains unexplained.
Constraining the Active Galactic Nucleus and Starburst Properties of the IR-luminous Quasar Host Galaxy APM08279+5255 at Redshift 4 with SOFIALeung, T. K. DaisyHayward, Christopher C.Casey, Caitlin M.Staguhn, JohannesKovacs, AttilaDowell, C. DarrenDOI: info:10.3847/1538-4357/ab11cev. 87648
Leung, T. K. Daisy, Hayward, Christopher C., Casey, Caitlin M., Staguhn, Johannes, Kovacs, Attila, and Dowell, C. Darren. 2019. "Constraining the Active Galactic Nucleus and Starburst Properties of the IR-luminous Quasar Host Galaxy APM08279+5255 at Redshift 4 with SOFIA." The Astrophysical Journal 876:48.
ID: 151835
Type: article
Authors: Leung, T. K. Daisy; Hayward, Christopher C.; Casey, Caitlin M.; Staguhn, Johannes; Kovacs, Attila; Dowell, C. Darren
Abstract: We present far-IR photometry and the infrared spectrum of the z = 3.9114 quasar/starburst composite system APM 08279+5255, obtained using the Stratospheric Observatory for Infrared Astronomy (SOFIA)/High-resolution Airborne Wideband Camera+ (HAWC+) and the Spitzer Space Telescope Infrared Spectrograph. We decompose the IR-to-radio spectral energy distribution (SED), sampled in 51 bands, using (i) a model comprised of two-temperature modified blackbodies and radio power laws and (ii) a semi-analytic model, which also accounts for emission from a clumpy torus. The latter is more realistic but requires a well-sampled SED, which is possible here. In the former model, we find temperatures of {T}dwarm} = 296{}-15+17 K and {T}dcold} = 110{}-3+3 K for the warm and cold dust components, respectively. This model suggests that the cold dust component dominates the far-infrared (FIR) energy budget (66%) but contributes only 17% to the total IR luminosity. Based on the torus models, we infer an inclination angle of i = 15{}-8+8° and the presence of silicate emission, in accordance with the Type-1 active galactic nucleus nature of APM 08279+5255. Accounting for the torus’ contribution to the FIR luminosity, we find a lensing-corrected star formation rate of SFR = 3075 × (4/μ L ) M yr‑1. We find that the central quasar contributes 30% to the FIR luminosity but dominates the total IR luminosity (93%). The 30% correction is in contrast to the 90% reported in previous work. In addition, the IR luminosity inferred from the torus model is a factor of two higher. These differences highlight the importance of adopting physically motivated models to properly account for IR emission in high-z quasars, which is now possible with SOFIA/HAWC+.
The IRAM/GISMO 2 mm Survey in the COSMOS FieldMagnelli, B.Karim, A.Staguhn, J.Kovács, A.Jiménez-Andrade, E. F.Casey, C. M.Zavala, J. A.Schinnerer, E.Sargent, M.Aravena, M.Bertoldi, F.Capak, P. L.Riechers, D. A.Benford, D. J.DOI: info:10.3847/1538-4357/ab1912v. 87745
Magnelli, B., Karim, A., Staguhn, J., Kovács, A., Jiménez-Andrade, E. F., Casey, C. M., Zavala, J. A., Schinnerer, E., Sargent, M., Aravena, M., Bertoldi, F., Capak, P. L., Riechers, D. A., and Benford, D. J. 2019. "The IRAM/GISMO 2 mm Survey in the COSMOS Field." The Astrophysical Journal 877:45.
ID: 151831
Type: article
Authors: Magnelli, B.; Karim, A.; Staguhn, J.; Kovács, A.; Jiménez-Andrade, E. F.; Casey, C. M.; Zavala, J. A.; Schinnerer, E.; Sargent, M.; Aravena, M.; Bertoldi, F.; Capak, P. L.; Riechers, D. A.; Benford, D. J.
Abstract: We present deep continuum observations at a wavelength of 2 mm centered on the COSMOS field using the Goddard IRAM Superconducting Millimeter Observer (GISMO) at the IRAM 30 m telescope. These data constitute the widest deep 2 mm survey to date, reaching a uniform σ ∼ 0.23 mJy beam‑1 sensitivity over ∼250 arcmin2 at ∼24″ resolution. We detect four sources at high significance (S/N ≥ 4.4) with an expected number of false detections of 0.09 sources and five sources at 4.4 > S/N ≥ 3.7 with an expected number of false detections of 1.65 sources. Combined with deep GISMO observations in GOODS-N, we constrain the 2 mm number counts over one decade in flux density. These measurements agree with most galaxy evolution models tested here, except those with a large population of dusty star-forming galaxies at z > 7. Five GISMO sources have counterparts in (sub)millimeter catalogs available in COSMOS. Their redshifts suggest that all but one lie above z ∼ 3. These four high-redshift (z > 3) galaxies have \tilde{z} = 3.9, SFRs ∼ 400–1200 M yr‑1, and M dust ∼ 109.5 M . They provide a relatively complete selection (∼66%) of the most luminous (L IR > 1012.6 L ) and highest-redshift (z > 3) galaxies detected within our survey area by AzTEC at 1.1 mm. We thus conclude that 2 mm surveys favor the selection of massive, vigorously star-forming, high-redshift galaxies. This is corroborated by GISMO-C4, a source with a low false-detection probability (∼6.2%), for which the absence of a (sub)millimeter counterpart supports a high-redshift origin (z ≳ 3). Based on observations with the IRAM 30 m telescope.
Mass Calibration of Optically Selected DES Clusters Using a Measurement of CMB-cluster Lensing with SPTpol DataRaghunathan, S.Patil, S.Baxter, E.Benson, B. A.Bleem, L. E.Chou, T. L.Crawford, T. M.Holder, G. P.McClintock, T.Reichardt, C. L.Rozo, E.Varga, T. N.Abbott, T. M. C.Ade, P. A. R.Allam, S.Anderson, A. J.Annis, J.Austermann, J. E.Avila, S.Beall, J. A.Bechtol, K.Bender, A. N.Bernstein, G.Bertin, E.Bianchini, F.Brooks, D.Burke, D. L.Carlstrom, J. E.Carretero, J.Chang, C. L.Chiang, H. C.Cho, H. -MCitron, R.Crites, A. T.Cunha, C. E.da Costa, L. N.Davis, C.Desai, S.Diehl, H. T.Dietrich, J. P.Dobbs, M. A.Doel, P.Eifler, T. F.Everett, W.Evrard, A. E.Flaugher, B.Fosalba, P.Frieman, J.Gallicchio, J.García-Bellido, J.Gaztanaga, E.George, E. M.Gilbert, A.Gruen, D.Gruendl, R. A.Gschwend, J.Gupta, N.Gutierrez, Haan, T.Halverson, N. W.Harrington, N.Hartley, W. G.Henning, J. W.Hilton, G. C.Hollowood, D. L.Holzapfel, W. L.Honscheid, K.Hou, Z.Hoyle, B.Hrubes, J. D.Huang, N.Hubmayr, J.Irwin, K. D.James, David J.Jeltema, T.Kim, A. G.Carrasco Kind, M.Knox, L.Kovacs, A.Kuehn, K.Kuropatkin, N.Lee, A. T.Li, T. S.Lima, M.Maia, M. A. G.Marshall, J. L.McMahon, J. J.Melchior, P.Menanteau, F.Meyer, S. S.Miller, C. J.Miquel, R.Mocanu, L.Montgomery, J.Nadolski, A.Natoli, T.Nibarger, J. P.Novosad, V.Padin, S.Plazas, A. A.Pryke, C.Rapetti, D.Romer, A. K.Carnero Rosell, A.Ruhl, J. E.Saliwanchik, B. R.Sanchez, E.Sayre, J. T.Scarpine, V.Schaffer, K. K.Schubnell, M.Serrano, S.Sevilla-Noarbe, I.Smecher, G.Smith, R. C.Soares-Santos, M.Sobreira, F.Stark, Antony A.Story, K. T.Suchyta, E.Swanson, M. E. C.Tarle, G.Thomas, D.Tucker, C.Vanderlinde, K.De Vicente, J.Vieira, J. D.Wang, G.Whitehorn, N.Wu, W. L. K.Zhang, Y.DOI: info:10.3847/1538-4357/ab01cav. 872170
Raghunathan, S., Patil, S., Baxter, E., Benson, B. A., Bleem, L. E., Chou, T. L., Crawford, T. M., Holder, G. P., McClintock, T., Reichardt, C. L., Rozo, E., Varga, T. N., Abbott, T. M. C., Ade, P. A. R., Allam, S., Anderson, A. J., Annis, J., Austermann, J. E., Avila, S., Beall, J. A., Bechtol, K., Bender, A. N., Bernstein, G., Bertin, E., Bianchini, F. et al. 2019. "Mass Calibration of Optically Selected DES Clusters Using a Measurement of CMB-cluster Lensing with SPTpol Data." The Astrophysical Journal 872:170.
ID: 150522
Type: article
Authors: Raghunathan, S.; Patil, S.; Baxter, E.; Benson, B. A.; Bleem, L. E.; Chou, T. L.; Crawford, T. M.; Holder, G. P.; McClintock, T.; Reichardt, C. L.; Rozo, E.; Varga, T. N.; Abbott, T. M. C.; Ade, P. A. R.; Allam, S.; Anderson, A. J.; Annis, J.; Austermann, J. E.; Avila, S.; Beall, J. A.; Bechtol, K.; Bender, A. N.; Bernstein, G.; Bertin, E.; Bianchini, F.; Brooks, D.; Burke, D. L.; Carlstrom, J. E.; Carretero, J.; Chang, C. L.; Chiang, H. C.; Cho, H. -M; Citron, R.; Crites, A. T.; Cunha, C. E.; da Costa, L. N.; Davis, C.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Dobbs, M. A.; Doel, P.; Eifler, T. F.; Everett, W.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gallicchio, J.; García-Bellido, J.; Gaztanaga, E.; George, E. M.; Gilbert, A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gupta, N.; Gutierrez, G.; de Haan, T.; Halverson, N. W.; Harrington, N.; Hartley, W. G.; Henning, J. W.; Hilton, G. C.; Hollowood, D. L.; Holzapfel, W. L.; Honscheid, K.; Hou, Z.; Hoyle, B.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; James, David J.; Jeltema, T.; Kim, A. G.; Carrasco Kind, M.; Knox, L.; Kovacs, A.; Kuehn, K.; Kuropatkin, N.; Lee, A. T.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; McMahon, J. J.; Melchior, P.; Menanteau, F.; Meyer, S. S.; Miller, C. J.; Miquel, R.; Mocanu, L.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Plazas, A. A.; Pryke, C.; Rapetti, D.; Romer, A. K.; Carnero Rosell, A.; Ruhl, J. E.; Saliwanchik, B. R.; Sanchez, E.; Sayre, J. T.; Scarpine, V.; Schaffer, K. K.; Schubnell, M.; Serrano, S.; Sevilla-Noarbe, I.; Smecher, G.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Stark, Antony A.; Story, K. T.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, C.; Vanderlinde, K.; De Vicente, J.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Wu, W. L. K.; Zhang, Y.
Abstract: We use cosmic microwave background (CMB) temperature maps from the 500 deg2 SPTpol survey to measure the stacked lensing convergence of galaxy clusters from the Dark Energy Survey (DES) Year-3 redMaPPer (RM) cluster catalog. The lensing signal is extracted through a modified quadratic estimator designed to be unbiased by the thermal Sunyaev–Zel’dovich (tSZ) effect. The modified estimator uses a tSZ-free map, constructed from the SPTpol 95 and 150 GHz data sets, to estimate the background CMB gradient. For lensing reconstruction, we employ two versions of the RM catalog: a flux-limited sample containing 4003 clusters and a volume-limited sample with 1741 clusters. We detect lensing at a significance of 8.7σ(6.7σ) with the flux (volume)–limited sample. By modeling the reconstructed convergence using the Navarro–Frenk–White profile, we find the average lensing masses to be {M}200{{m}}=({1.62}-0.25+0.32 [{stat}.]+/- 0.04 [{sys}.]) and ({1.28}-0.18+0.14 [{stat}.]+/- 0.03 [{sys}.]) × {10}14 {M}ȯ for the volume- and flux-limited samples, respectively. The systematic error budget is much smaller than the statistical uncertainty and is dominated by the uncertainties in the RM cluster centroids. We use the volume-limited sample to calibrate the normalization of the mass-richness scaling relation, and find a result consistent with the galaxy weak-lensing measurements from DES.
The Dark Energy Survey: Data Release 1Abbott, T. M. C.Abdalla, F. B.Allam, S.Amara, A.Annis, J.Asorey, J.Avila, S.Ballester, O.Banerji, M.Barkhouse, W.Baruah, L.Baumer, M.Bechtol, K.Becker, M. R.Benoit-Lévy, A.Bernstein, G. M.Bertin, E.Blazek, J.Bocquet, S.Brooks, D.Brout, D.Buckley-Geer, E.Burke, D. L.Busti, V.Campisano, R.Cardiel-Sas, L.Carnero Rosell, A.Carrasco Kind, M.Carretero, J.Castander, F. J.Cawthon, R.Chang, C.Chen, X.Conselice, C.Costa, G.Crocce, M.Cunha, C. E.D'Andrea, C. B.da Costa, L. N.Das, R.Daues, G.Davis, T. M.Davis, C.De Vicente, J.DePoy, D. L.DeRose, J.Desai, S.Diehl, H. T.Dietrich, J. P.Dodelson, S.Doel, P.Drlica-Wagner, A.Eifler, T. F.Elliott, A. E.Evrard, A. E.Farahi, A.Fausti Neto, A.Fernandez, E.Finley, D. A.Flaugher, B.Foley, R. J.Fosalba, P.Friedel, D. N.Frieman, J.García-Bellido, J.Gaztanaga, E.Gerdes, D. W.Giannantonio, T.Gill, M. S. S.Glazebrook, K.Goldstein, D. A.Gower, M.Gruen, D.Gruendl, R. A.Gschwend, J.Gupta, R. R.Gutierrez, G.Hamilton, S.Hartley, W. G.Hinton, S. R.Hislop, J. M.Hollowood, D.Honscheid, K.Hoyle, B.Huterer, D.Jain, B.James, David J.Jeltema, T.Johnson, M. W. G.Johnson, M. D.Kacprzak, T.Kent, S.Khullar, G.Klein, M.Kovacs, A.Koziol, A. M. G.Krause, E.Kremin, A.Kron, R.Kuehn, K.Kuhlmann, S.Kuropatkin, N.Lahav, O.Lasker, J.Li, T. S.Li, R. T.Liddle, A. R.Lima, M.Lin, H.López-Reyes, P.MacCrann, N.Maia, M. A. G.Maloney, J. D.Manera, M.March, M.Marriner, J.Marshall, J. L.Martini, P.McClintock, T.McKay, T.McMahon, R. G.Melchior, P.Menanteau, F.Miller, C. J.Miquel, R.Mohr, J. J.Morganson, E.Mould, J.Neilsen, E.Nichol, R. C.Nogueira, F.Nord, B.Nugent, P.Nunes, L.Ogando, R. L. C.Old, L.Pace, A. B.Palmese, A.Paz-Chinchón, F.Peiris, H. V.Percival, W. J.Petravick, D.Plazas, A. A.Poh, J.Pond, C.Porredon, A.Pujol, A.Refregier, A.Reil, K.Ricker, P. M.Rollins, R. P.Romer, A. K.Roodman, A.Rooney, P.Ross, A. J.Rykoff, E. S.Sako, M.Sanchez, M. L.Sanchez, E.Santiago, B.Saro, A.Scarpine, V.Scolnic, D.Serrano, S.Sevilla-Noarbe, I.Sheldon, E.Shipp, N.Silveira, M. L.Smith, M.Smith, R. C.Smith, J. A.Soares-Santos, M.Sobreira, F.Song, J.Stebbins, A.Suchyta, E.Sullivan, M.Swanson, M. E. C.Tarle, G.Thaler, J.Thomas, D.Thomas, R. C.Troxel, M. A.Tucker, D. L.Vikram, V.Vivas, A. K.Walker, A. R.Wechsler, R. H.Weller, J.Wester, W.Wolf, R. C.Wu, H.Yanny, B.Zenteno, A.Zhang, Y.Zuntz, J.DES CollaborationJuneau, S.Fitzpatrick, M.Nikutta, R.Nidever, D.Olsen, K.Scott, A.Data Lab, NOAODOI: info:10.3847/1538-4365/aae9f0v. 23918
Abbott, T. M. C., Abdalla, F. B., Allam, S., Amara, A., Annis, J., Asorey, J., Avila, S., Ballester, O., Banerji, M., Barkhouse, W., Baruah, L., Baumer, M., Bechtol, K., Becker, M. R., Benoit-Lévy, A., Bernstein, G. M., Bertin, E., Blazek, J., Bocquet, S., Brooks, D., Brout, D., Buckley-Geer, E., Burke, D. L., Busti, V., Campisano, R. et al. 2018. "The Dark Energy Survey: Data Release 1." The Astrophysical Journal Supplement Series 239:18.
ID: 150169
Type: article
Authors: Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Amara, A.; Annis, J.; Asorey, J.; Avila, S.; Ballester, O.; Banerji, M.; Barkhouse, W.; Baruah, L.; Baumer, M.; Bechtol, K.; Becker, M. R.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Blazek, J.; Bocquet, S.; Brooks, D.; Brout, D.; Buckley-Geer, E.; Burke, D. L.; Busti, V.; Campisano, R.; Cardiel-Sas, L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cawthon, R.; Chang, C.; Chen, X.; Conselice, C.; Costa, G.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Das, R.; Daues, G.; Davis, T. M.; Davis, C.; De Vicente, J.; DePoy, D. L.; DeRose, J.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Dodelson, S.; Doel, P.; Drlica-Wagner, A.; Eifler, T. F.; Elliott, A. E.; Evrard, A. E.; Farahi, A.; Fausti Neto, A.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fosalba, P.; Friedel, D. N.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gill, M. S. S.; Glazebrook, K.; Goldstein, D. A.; Gower, M.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gupta, R. R.; Gutierrez, G.; Hamilton, S.; Hartley, W. G.; Hinton, S. R.; Hislop, J. M.; Hollowood, D.; Honscheid, K.; Hoyle, B.; Huterer, D.; Jain, B.; James, David J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kacprzak, T.; Kent, S.; Khullar, G.; Klein, M.; Kovacs, A.; Koziol, A. M. G.; Krause, E.; Kremin, A.; Kron, R.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lasker, J.; Li, T. S.; Li, R. T.; Liddle, A. R.; Lima, M.; Lin, H.; López-Reyes, P.; MacCrann, N.; Maia, M. A. G.; Maloney, J. D.; Manera, M.; March, M.; Marriner, J.; Marshall, J. L.; Martini, P.; McClintock, T.; McKay, T.; McMahon, R. G.; Melchior, P.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Morganson, E.; Mould, J.; Neilsen, E.; Nichol, R. C.; Nogueira, F.; Nord, B.; Nugent, P.; Nunes, L.; Ogando, R. L. C.; Old, L.; Pace, A. B.; Palmese, A.; Paz-Chinchón, F.; Peiris, H. V.; Percival, W. J.; Petravick, D.; Plazas, A. A.; Poh, J.; Pond, C.; Porredon, A.; Pujol, A.; Refregier, A.; Reil, K.; Ricker, P. M.; Rollins, R. P.; Romer, A. K.; Roodman, A.; Rooney, P.; Ross, A. J.; Rykoff, E. S.; Sako, M.; Sanchez, M. L.; Sanchez, E.; Santiago, B.; Saro, A.; Scarpine, V.; Scolnic, D.; Serrano, S.; Sevilla-Noarbe, I.; Sheldon, E.; Shipp, N.; Silveira, M. L.; Smith, M.; Smith, R. C.; Smith, J. A.; Soares-Santos, M.; Sobreira, F.; Song, J.; Stebbins, A.; Suchyta, E.; Sullivan, M.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Troxel, M. A.; Tucker, D. L.; Vikram, V.; Vivas, A. K.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Wester, W.; Wolf, R. C.; Wu, H.; Yanny, B.; Zenteno, A.; Zhang, Y.; Zuntz, J.; DES Collaboration; Juneau, S.; Fitzpatrick, M.; Nikutta, R.; Nidever, D.; Olsen, K.; Scott, A.; Data Lab, NOAO
Abstract: We describe the first public data release of the Dark Energy Survey, DES DR1, consisting of reduced single-epoch images, co-added images, co-added source catalogs, and associated products and services assembled over the first 3 yr of DES science operations. DES DR1 is based on optical/near-infrared imaging from 345 distinct nights (2013 August to 2016 February) by the Dark Energy Camera mounted on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile. We release data from the DES wide-area survey covering ∼5000 deg2 of the southern Galactic cap in five broad photometric bands, grizY. DES DR1 has a median delivered point-spread function of g=1.12, r = 0.96, i = 0.88, z = 0.84, and Y = 0.″90 FWHM, a photometric precision of of the southern Galactic cap in five broad photometric bands, grizY. DES DR1 has a median delivered point-spread function of g=1.12, r = 0.96, i = 0.88, z = 0.84, and Y = 0.″90 FWHM, a photometric precision of 2 produced from ∼39,000 individual exposures. Benchmark galaxy and stellar samples contain ∼310 million and ∼80 million objects, respectively, following a basic object quality selection. These data are accessible through a range of interfaces, including query web clients, image cutout servers, jupyter notebooks, and an interactive co-add image visualization tool. DES DR1 constitutes the largest photometric data set to date at the achieved depth and photometric precision.
SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at z = 1.03Ma, JingzheBrown, AriannaCooray, AsanthaNayyeri, HooshangMessias, HugoTimmons, NicholasStaguhn, JohannesTemi, PasqualeDowell, C. DarrenWardlow, JulieFadda, DarioKovacs, AttilaRiechers, DominikOteo, IvanWilson, DerekPerez-Fournon, IsmaelDOI: info:10.3847/1538-4357/aad4a0v. 86460
Ma, Jingzhe, Brown, Arianna, Cooray, Asantha, Nayyeri, Hooshang, Messias, Hugo, Timmons, Nicholas, Staguhn, Johannes, Temi, Pasquale, Dowell, C. Darren, Wardlow, Julie, Fadda, Dario, Kovacs, Attila, Riechers, Dominik, Oteo, Ivan, Wilson, Derek, and Perez-Fournon, Ismael. 2018. "SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at z = 1.03." The Astrophysical Journal 864:60.
ID: 149175
Type: article
Authors: Ma, Jingzhe; Brown, Arianna; Cooray, Asantha; Nayyeri, Hooshang; Messias, Hugo; Timmons, Nicholas; Staguhn, Johannes; Temi, Pasquale; Dowell, C. Darren; Wardlow, Julie; Fadda, Dario; Kovacs, Attila; Riechers, Dominik; Oteo, Ivan; Wilson, Derek; Perez-Fournon, Ismael
Abstract: We present the detection at 89 μm (observed frame) of the Herschel-selected gravitationally lensed starburst galaxy HATLAS J1429-0028 (also known as G15v2.19) in 15 minutes with the High-resolution Airborne Wideband Camera-plus (HAWC+) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). The spectacular lensing system consists of an edge-on foreground disk galaxy at z = 0.22 and a nearly complete Einstein ring of an intrinsic ultra-luminous infrared (IR) galaxy at z = 1.03. Is this high IR luminosity powered by pure star formation (SF) or also an active galactic nucleus (AGN)? Previous nebular line diagnostics indicate that it is star formation dominated. We perform a 27-band multiwavelength spectral energy distribution (SED) modeling including the new SOFIA/HAWC+ data to constrain the fractional AGN contribution to the total IR luminosity. The AGN fraction in the IR turns out to be negligible. In addition, J1429-0028 serves as a testbed for comparing SED results from different models/templates and SED codes (MAGPHYS, SED3FIT, and CIGALE). We stress that star formation history is the dominant source of uncertainty in the derived stellar mass (as high as a factor of ∼10) even in the case of extensive photometric coverage. Furthermore, the detection of a source at z ∼ 1 with SOFIA/HAWC+ demonstrates the potential of utilizing this facility for distant galaxy studies including the decomposition of SF/AGN components, which cannot be accomplished with other current facilities.
Resolving the Merging Planck Cluster PLCK G147.3-16.6 with GISMOMroczkowski, T.Kovács, A.Bulbul, E.Staguhn, J.Benford, D. J.Clarke, T. E.van Weeren, R. J.Intema, H. T.Randall, Scott W.DOI: info:10.1088/2041-8205/808/1/L6v. 808L6
Mroczkowski, T., Kovács, A., Bulbul, E., Staguhn, J., Benford, D. J., Clarke, T. E., van Weeren, R. J., Intema, H. T., and Randall, Scott W. 2015. "Resolving the Merging Planck Cluster PLCK G147.3-16.6 with GISMO." Astrophysical Journal Letters 808:L6.
ID: 136961
Type: article
Authors: Mroczkowski, T.; Kovács, A.; Bulbul, E.; Staguhn, J.; Benford, D. J.; Clarke, T. E.; van Weeren, R. J.; Intema, H. T.; Randall, Scott W.
Abstract: The Planck satellite has recently completed an all-sky galaxy cluster survey exploiting the thermal Sunyaev-Zel'dovich (SZ) effect to locate some of the most massive systems observable. With a median redshift of =0.22, the clusters found by Planck at z\gt 0.3 are proving to be exceptionally massive and/or disturbed systems. One notable Planck discovery at z = 0.645, PLCK G147.3-16.6, has an elongated core and hosts a radio halo, indicating it is likely in the process of merging. We present a 16.´´5 resolution SZ observation of this high-z merger using the Goddard-IRAM Superconducting 2-Millimeter Observer, and compare it to X-ray follow-up observations with XMM-Newton. We find the SZ pressure substructure is offset from the core components seen in X-ray. We interpret this as possible line of sight temperature or density substructure due to the on-going merger.
Highly efficient star formation in NGC 5253 possibly from stream-fed accretionTurner, J. L.Beck, S. C.Benford, D. J.Consiglio, S. M.Ho, P. T. P.Kovács, A.Meier, D. S.Zhao, J. -HDOI: info:10.1038/nature14218v. 519331–333
Turner, J. L., Beck, S. C., Benford, D. J., Consiglio, S. M., Ho, P. T. P., Kovács, A., Meier, D. S., and Zhao, J. -H. 2015. "Highly efficient star formation in NGC 5253 possibly from stream-fed accretion." Nature 519:331– 333.
ID: 135622
Type: article
Authors: Turner, J. L.; Beck, S. C.; Benford, D. J.; Consiglio, S. M.; Ho, P. T. P.; Kovács, A.; Meier, D. S.; Zhao, J. -H
Abstract: Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation. Here we report the detection of the J = 3-->2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.
Herschel-ATLAS: A Binary HyLIRG Pinpointing a Cluster of Starbursting ProtoellipticalsIvison, R. J.Swinbank, A. M.Smail, IanHarris, A. I.Bussmann, R. S.Cooray, A.Cox, P.Fu, H.Kovács, A.Krips, M.Narayanan, D.Negrello, M.Neri, R.Peñarrubia, J.Richard, J.Riechers, D. A.Rowlands, K.Staguhn, J. G.Targett, T. A.Amber, S.Baker, A. J.Bourne, N.Bertoldi, F.Bremer, M.Calanog, J. A.Clements, D. L.Dannerbauer, H.Dariush, Zotti, G.Dunne, L.Eales, S. A.Farrah, D.Fleuren, S.Franceschini, A.Geach, J. E.George, R. D.Helly, J. C.Hopwood, R.Ibar, E.Jarvis, M. J.Kneib, J. -PMaddox, S.Omont, A.Scott, D.Serjeant, S.Smith, M. W. L.Thompson, M. A.Valiante, E.Valtchanov, I.Vieira, J.van der Werf, P.DOI: info:10.1088/0004-637X/772/2/137v. 772137
Ivison, R. J., Swinbank, A. M., Smail, Ian, Harris, A. I., Bussmann, R. S., Cooray, A., Cox, P., Fu, H., Kovács, A., Krips, M., Narayanan, D., Negrello, M., Neri, R., Peñarrubia, J., Richard, J., Riechers, D. A., Rowlands, K., Staguhn, J. G., Targett, T. A., Amber, S., Baker, A. J., Bourne, N., Bertoldi, F., Bremer, M., Calanog, J. A. et al. 2013. "Herschel-ATLAS: A Binary HyLIRG Pinpointing a Cluster of Starbursting Protoellipticals." The Astrophysical Journal 772:137.
ID: 116774
Type: article
Authors: Ivison, R. J.; Swinbank, A. M.; Smail, Ian; Harris, A. I.; Bussmann, R. S.; Cooray, A.; Cox, P.; Fu, H.; Kovács, A.; Krips, M.; Narayanan, D.; Negrello, M.; Neri, R.; Peñarrubia, J.; Richard, J.; Riechers, D. A.; Rowlands, K.; Staguhn, J. G.; Targett, T. A.; Amber, S.; Baker, A. J.; Bourne, N.; Bertoldi, F.; Bremer, M.; Calanog, J. A.; Clements, D. L.; Dannerbauer, H.; Dariush, A.; de Zotti, G.; Dunne, L.; Eales, S. A.; Farrah, D.; Fleuren, S.; Franceschini, A.; Geach, J. E.; George, R. D.; Helly, J. C.; Hopwood, R.; Ibar, E.; Jarvis, M. J.; Kneib, J. -P; Maddox, S.; Omont, A.; Scott, D.; Serjeant, S.; Smith, M. W. L.; Thompson, M. A.; Valiante, E.; Valtchanov, I.; Vieira, J.; van der Werf, P.
Abstract: Panchromatic observations of the best candidate hyperluminous infrared galaxies from the widest Herschel extragalactic imaging survey have led to the discovery of at least four intrinsically luminous z = 2.41 galaxies across an ≈100 kpc region—a cluster of starbursting protoellipticals. Via subarcsecond interferometric imaging we have measured accurate gas and star formation surface densities. The two brightest galaxies span ~3 kpc FWHM in submillimeter/radio continuum and
A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34Riechers, Dominik A.Bradford, C. M.Clements, D. L.Dowell, C. D.Pérez-Fournon, I.Ivison, R. J.Bridge, C.Conley, A.Fu, HaiVieira, J. D.Wardlow, J.Calanog, J.Cooray, A.Hurley, P.Neri, R.Kamenetzky, J.Aguirre, J. E.Altieri, B.Arumugam, V.Benford, D. J.Béthermin, M.Bock, J.Burgarella, D.Cabrera-Lavers, A.Chapman, S. C.Cox, P.Dunlop, J. S.Earle, L.Farrah, D.Ferrero, P.Franceschini, A.Gavazzi, R.Glenn, J.Solares, E. A. GonzalezGurwell, M. A.Halpern, M.Hatziminaoglou, E.Hyde, A.Ibar, E.Kovács, A.Krips, M.Lupu, R. E.Maloney, P. R.Martinez-Navajas, P.Matsuhara, H.Murphy, E. J.Naylor, B. J.Nguyen, H. T.Oliver, S. J.Omont, A.Page, M. J.Petitpas, Glen R.Rangwala, N.Roseboom, I. G.Scott, D.Smith, A. J.Staguhn, J. G.Streblyanska, A.Thomson, A. P.Valtchanov, I.Viero, M.Wang, L.Zemcov, M.Zmuidzinas, J.DOI: info:10.1038/nature12050v. 496329–333
Riechers, Dominik A., Bradford, C. M., Clements, D. L., Dowell, C. D., Pérez-Fournon, I., Ivison, R. J., Bridge, C., Conley, A., Fu, Hai, Vieira, J. D., Wardlow, J., Calanog, J., Cooray, A., Hurley, P., Neri, R., Kamenetzky, J., Aguirre, J. E., Altieri, B., Arumugam, V., Benford, D. J., Béthermin, M., Bock, J., Burgarella, D., Cabrera-Lavers, A., Chapman, S. C. et al. 2013. "A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34." Nature 496:329– 333.
ID: 115624
Type: article
Authors: Riechers, Dominik A.; Bradford, C. M.; Clements, D. L.; Dowell, C. D.; Pérez-Fournon, I.; Ivison, R. J.; Bridge, C.; Conley, A.; Fu, Hai; Vieira, J. D.; Wardlow, J.; Calanog, J.; Cooray, A.; Hurley, P.; Neri, R.; Kamenetzky, J.; Aguirre, J. E.; Altieri, B.; Arumugam, V.; Benford, D. J.; Béthermin, M.; Bock, J.; Burgarella, D.; Cabrera-Lavers, A.; Chapman, S. C.; Cox, P.; Dunlop, J. S.; Earle, L.; Farrah, D.; Ferrero, P.; Franceschini, A.; Gavazzi, R.; Glenn, J.; Solares, E. A. Gonzalez; Gurwell, M. A.; Halpern, M.; Hatziminaoglou, E.; Hyde, A.; Ibar, E.; Kovács, A.; Krips, M.; Lupu, R. E.; Maloney, P. R.; Martinez-Navajas, P.; Matsuhara, H.; Murphy, E. J.; Naylor, B. J.; Nguyen, H. T.; Oliver, S. J.; Omont, A.; Page, M. J.; Petitpas, Glen R.; Rangwala, N.; Roseboom, I. G.; Scott, D.; Smith, A. J.; Staguhn, J. G.; Streblyanska, A.; Thomson, A. P.; Valtchanov, I.; Viero, M.; Wang, L.; Zemcov, M.; Zmuidzinas, J.
Abstract: Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A `maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.