Publication Search Results

Search Results

Showing 1-20 of about 60 results.
Long-Term Impacts of Invasive Insects and Pathogens on Composition, Biomass, and Diversity of Forests in Virginia's Blue Ridge MountainsAnderson-Teixeira, Kristina J.Herrmann, ValentineCass, Wendy B.Williams, Alan B.Paull, Stephen J.Gonzalez-Akre, Erika B.Helcoski, RyanTepley, Alan J.Bourg, Norman A.Cosma, Christopher T.Ferson, Abigail E.Kittle, CarolineMeakem, VictoriaMcGregor, Ian R.Prestipino, Maya N.Scott, Michael K.Terrell, Alyssa R.Alonso, AlfonsoDallmeier, FranciscoMcShea, William J.2020DOI: info:10.1007/s10021-020-00503-wEcosystems1432-9840
Anderson-Teixeira, Kristina J., Herrmann, Valentine, Cass, Wendy B., Williams, Alan B., Paull, Stephen J., Gonzalez-Akre, Erika B., Helcoski, Ryan, Tepley, Alan J., Bourg, Norman A., Cosma, Christopher T., Ferson, Abigail E., Kittle, Caroline, Meakem, Victoria, McGregor, Ian R., Prestipino, Maya N., Scott, Michael K., Terrell, Alyssa R., Alonso, Alfonso, Dallmeier, Francisco, and McShea, William J. 2020. "Long-Term Impacts of Invasive Insects and Pathogens on Composition, Biomass, and Diversity of Forests in Virginia's Blue Ridge Mountains." Ecosystems https://doi.org/10.1007/s10021-020-00503-w
ID: 155476
Type: article
Authors: Anderson-Teixeira, Kristina J.; Herrmann, Valentine; Cass, Wendy B.; Williams, Alan B.; Paull, Stephen J.; Gonzalez-Akre, Erika B.; Helcoski, Ryan; Tepley, Alan J.; Bourg, Norman A.; Cosma, Christopher T.; Ferson, Abigail E.; Kittle, Caroline; Meakem, Victoria; McGregor, Ian R.; Prestipino, Maya N.; Scott, Michael K.; Terrell, Alyssa R.; Alonso, Alfonso; Dallmeier, Francisco; McShea, William J.
Keywords: NZP; STRI
Abstract: Exotic forest insects and pathogens (EFIP) have become regular features of temperate forest ecosystems, yet we lack a long-term perspective on their net impacts on tree mortality, carbon sequestration, and tree species diversity. Here, we analyze 3 decades (1987-2019) of forest monitoring data from the Blue Ridge Mountains ecoregion in eastern North America, including 67 plots totaling 29.4 ha, along with a historical survey from 1939. Over the past century, EFIP substantially affected at least eight tree genera. Tree host taxa had anomalously high mortality rates (>= 6% year(-1) from 2008 to 2019 vs 1.4% year(-1) for less-impacted taxa). Following the arrival of EFIP, affected taxa declined in abundance (- 25 to - 100%) and live aboveground biomass (AGB; - 13 to - 100%) within our monitoring plots. We estimate that EFIP were responsible for 21-29% of ecosystem AGB loss through mortality (- 87 g m(-2) year(-1)) from 1991 to 2013 across 66 sites. Over a century, net AGB loss among affected species totaled roughly 6.6-10 kg m(-2). The affected host taxa accounted for 23-29% of genera losses at the plot scale, with mixed net effects on alpha-diversity. Several taxa were lost from our monitoring plots but not completely extirpated from the region. Despite these losses, both total AGB and alpha-diversity were largely recovered through increases in sympatric genera. These results indicate that EFIP have been an important force shaping forest composition, carbon cycling, and diversity. At the same time, less-affected taxa in these relatively diverse temperate forests have conferred substantial resilience with regard to biomass and alpha-diversity.
Mapping carbon accumulation potential from global natural forest regrowthCook-Patton, SusanLeavitt, Sara M.Gibbs, DavidHarris, Nancy L.Lister, KristineAnderson-Teixeira, KristinaBriggs, Russell D.Chazdon, Robin L.Crowther, Thomas W.Ellis, Peter W.Griscom, Heather P.Herrmann, ValentineHoll, Karen D.Houghton, Richard A.Larrosa, CeciliaLomax, GuyLucas, RichardMadsen, PalleMalhi, YadvinderPaquette, AlainParker, John D.Paul, KerynRouth, DevinRoxburgh, StephenSaatchi, Sassanvan den Hoogen, JohanWalker, Wayne S.Wheeler, Charlotte E.Wood, Stephen A.Xu, LiangGriscom, Bronson W.2020DOI: info:10.1038/s41586-020-2686-xNaturev. 585No. 7826545550545–5500028-0836
Cook-Patton, Susan, Leavitt, Sara M., Gibbs, David, Harris, Nancy L., Lister, Kristine, Anderson-Teixeira, Kristina, Briggs, Russell D., Chazdon, Robin L., Crowther, Thomas W., Ellis, Peter W., Griscom, Heather P., Herrmann, Valentine, Holl, Karen D., Houghton, Richard A., Larrosa, Cecilia, Lomax, Guy, Lucas, Richard, Madsen, Palle, Malhi, Yadvinder, Paquette, Alain, Parker, John D., Paul, Keryn, Routh, Devin, Roxburgh, Stephen, Saatchi, Sassan et al. 2020. "Mapping carbon accumulation potential from global natural forest regrowth." Nature 585 (7826):545–550. https://doi.org/10.1038/s41586-020-2686-x
ID: 157060
Type: article
Authors: Cook-Patton, Susan; Leavitt, Sara M.; Gibbs, David; Harris, Nancy L.; Lister, Kristine; Anderson-Teixeira, Kristina; Briggs, Russell D.; Chazdon, Robin L.; Crowther, Thomas W.; Ellis, Peter W.; Griscom, Heather P.; Herrmann, Valentine; Holl, Karen D.; Houghton, Richard A.; Larrosa, Cecilia; Lomax, Guy; Lucas, Richard; Madsen, Palle; Malhi, Yadvinder; Paquette, Alain; Parker, John D.; Paul, Keryn; Routh, Devin; Roxburgh, Stephen; Saatchi, Sassan; van den Hoogen, Johan; Walker, Wayne S.; Wheeler, Charlotte E.; Wood, Stephen A.; Xu, Liang; Griscom, Bronson W.
Keywords: SERC; STRI; NZP
Protecting irrecoverable carbon in Earth's ecosystemsGoldstein, AllieTurner, Will R.Spawn, Seth A.Anderson-Teixeira, Kristina J.Cook-Patton, SusanFargione, JosephGibbs, Holly K.Griscom, BronsonHewson, Jennifer H.Howard, Jennifer F.Ledezma, Juan CarlosPage, SusanKoh, Lian PinRockström, JohanSanderman, JonathanHole, David G.2020DOI: info:10.1038/s41558-020-0738-8Nature Climate Changev. 10No. 4287295287–2951758-678X
Goldstein, Allie, Turner, Will R., Spawn, Seth A., Anderson-Teixeira, Kristina J., Cook-Patton, Susan, Fargione, Joseph, Gibbs, Holly K., Griscom, Bronson, Hewson, Jennifer H., Howard, Jennifer F., Ledezma, Juan Carlos, Page, Susan, Koh, Lian Pin, Rockström, Johan, Sanderman, Jonathan, and Hole, David G. 2020. "Protecting irrecoverable carbon in Earth's ecosystems." Nature Climate Change 10 (4):287–295. https://doi.org/10.1038/s41558-020-0738-8
ID: 154881
Type: article
Authors: Goldstein, Allie; Turner, Will R.; Spawn, Seth A.; Anderson-Teixeira, Kristina J.; Cook-Patton, Susan; Fargione, Joseph; Gibbs, Holly K.; Griscom, Bronson; Hewson, Jennifer H.; Howard, Jennifer F.; Ledezma, Juan Carlos; Page, Susan; Koh, Lian Pin; Rockström, Johan; Sanderman, Jonathan; Hole, David G.
Keywords: NZP; STRI
Pervasive shifts in forest dynamics in a changing worldMcDowell, Nate G.Allen, Craig D.Anderson-Teixeira, Kristina J.Aukema, Brian H.Bond-Lamberty, BenChini, LouiseClark, James S.Dietze, MichaelGrossiord, CharlotteHanbury-Brown, AdamHurtt, George C.Jackson, Robert B.Johnson, Daniel J.Kueppers, LaraLichstein, Jeremy W.Ogle, KionaPoulter, BenjaminPugh, Thomas A. M.Seidl, RupertTurner, Monica G.Uriarte, MariaWalker, Anthony P.Xu, Chonggang2020DOI: info:10.1126/science.aaz9463Sciencev. 368No. 6494964+964–+0036-8075
McDowell, Nate G., Allen, Craig D., Anderson-Teixeira, Kristina J., Aukema, Brian H., Bond-Lamberty, Ben, Chini, Louise, Clark, James S., Dietze, Michael, Grossiord, Charlotte, Hanbury-Brown, Adam, Hurtt, George C., Jackson, Robert B., Johnson, Daniel J., Kueppers, Lara, Lichstein, Jeremy W., Ogle, Kiona, Poulter, Benjamin, Pugh, Thomas A. M., Seidl, Rupert, Turner, Monica G., Uriarte, Maria, Walker, Anthony P., and Xu, Chonggang. 2020. "Pervasive shifts in forest dynamics in a changing world." Science 368 (6494):964–+. https://doi.org/10.1126/science.aaz9463
ID: 155761
Type: article
Authors: McDowell, Nate G.; Allen, Craig D.; Anderson-Teixeira, Kristina J.; Aukema, Brian H.; Bond-Lamberty, Ben; Chini, Louise; Clark, James S.; Dietze, Michael; Grossiord, Charlotte; Hanbury-Brown, Adam; Hurtt, George C.; Jackson, Robert B.; Johnson, Daniel J.; Kueppers, Lara; Lichstein, Jeremy W.; Ogle, Kiona; Poulter, Benjamin; Pugh, Thomas A. M.; Seidl, Rupert; Turner, Monica G.; Uriarte, Maria; Walker, Anthony P.; Xu, Chonggang
Keywords: NZP; STRI
Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forestMcGregor, Ian R.Helcoski, RyanKunert, NorbertTepley, Alan J.Gonzalez‐Akre, Erika B.Herrmann, ValentineZailaa, JosephStovall, Atticus E. L.Bourg, Norman A.McShea, William J.Pederson, NeilSack, LawrenAnderson‐Teixeira, Kristina J.2020DOI: info:10.1111/nph.16996New Phytologist0028-646X
McGregor, Ian R., Helcoski, Ryan, Kunert, Norbert, Tepley, Alan J., Gonzalez‐Akre, Erika B., Herrmann, Valentine, Zailaa, Joseph, Stovall, Atticus E. L., Bourg, Norman A., McShea, William J., Pederson, Neil, Sack, Lawren, and Anderson‐Teixeira, Kristina J. 2020. "Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest." New Phytologist https://doi.org/10.1111/nph.16996
ID: 157275
Type: article
Authors: McGregor, Ian R.; Helcoski, Ryan; Kunert, Norbert; Tepley, Alan J.; Gonzalez‐Akre, Erika B.; Herrmann, Valentine; Zailaa, Joseph; Stovall, Atticus E. L.; Bourg, Norman A.; McShea, William J.; Pederson, Neil; Sack, Lawren; Anderson‐Teixeira, Kristina J.
Keywords: NZP; STRI
Spatial covariance of herbivorous and predatory guilds of forest canopy arthropods along a latitudinal gradientMottl, OndrejFibich, PavelKlimes, PetrVolf, MartinTropek, RobertAnderson-Teixeira, Kristina J.Auga, JohnBlair, ThomasButterill, PhilCarscallen, GraceGonzalez-Akre, ErikaGoodman, AaronKaman, OndrejLamarre, Greg P. A.Libra, MartinLosada, Maria E.Manumbor, MarkusMiller, Scott E.Molem, KennethNichols, GeoffreyPlowman, Nichola S.Redmond, ConorSeifert, Carlo L.Vrana, JanWeiblen, George D.Novotny, Vojtech2020DOI: info:10.1111/ele.13579Ecology Lettersv. 23No. 10149915101499–15101461-023X
Mottl, Ondrej, Fibich, Pavel, Klimes, Petr, Volf, Martin, Tropek, Robert, Anderson-Teixeira, Kristina J., Auga, John, Blair, Thomas, Butterill, Phil, Carscallen, Grace, Gonzalez-Akre, Erika, Goodman, Aaron, Kaman, Ondrej, Lamarre, Greg P. A., Libra, Martin, Losada, Maria E., Manumbor, Markus, Miller, Scott E., Molem, Kenneth, Nichols, Geoffrey, Plowman, Nichola S., Redmond, Conor, Seifert, Carlo L., Vrana, Jan, Weiblen, George D. et al. 2020. "Spatial covariance of herbivorous and predatory guilds of forest canopy arthropods along a latitudinal gradient." Ecology Letters 23 (10):1499–1510. https://doi.org/10.1111/ele.13579
ID: 156677
Type: article
Authors: Mottl, Ondrej; Fibich, Pavel; Klimes, Petr; Volf, Martin; Tropek, Robert; Anderson-Teixeira, Kristina J.; Auga, John; Blair, Thomas; Butterill, Phil; Carscallen, Grace; Gonzalez-Akre, Erika; Goodman, Aaron; Kaman, Ondrej; Lamarre, Greg P. A.; Libra, Martin; Losada, Maria E.; Manumbor, Markus; Miller, Scott E.; Molem, Kenneth; Nichols, Geoffrey; Plowman, Nichola S.; Redmond, Conor; Seifert, Carlo L.; Vrana, Jan; Weiblen, George D.; Novotny, Vojtech
Keywords: STRI; NMNH; NH-Entomology; NZP
Abstract: Abstract In arthropod community ecology, species richness studies tend to be prioritised over those investigating patterns of abundance. Consequently, the biotic and abiotic drivers of arboreal arthropod abundance are still relatively poorly known. In this cross-continental study, we employ a theoretical framework in order to examine patterns of covariance among herbivorous and predatory arthropod guilds. Leaf-chewing and leaf-mining herbivores, and predatory ants and spiders, were censused on > 1000 trees in nine 0.1 ha forest plots. After controlling for tree size and season, we found no negative pairwise correlations between guild abundances per plot, suggestive of weak signals of both inter-guild competition and top-down regulation of herbivores by predators. Inter-guild interaction strengths did not vary with mean annual temperature, thus opposing the hypothesis that biotic interactions intensify towards the equator. We find evidence for the bottom-up limitation of arthropod abundances via resources and abiotic factors, rather than for competition and predation.
Vertical stratification of a temperate forest caterpillar community in eastern North AmericaSeifert, Carlo L.Lamarre, Greg P. A.Volf, MartinJorge, Leonardo R.Miller, Scott E.Wagner, David L.Anderson-Teixeira, Kristina J.Novotny, Vojtech2020DOI: info:10.1007/s00442-019-04584-wOecologiav. 192501514501–5140029-8549
Seifert, Carlo L., Lamarre, Greg P. A., Volf, Martin, Jorge, Leonardo R., Miller, Scott E., Wagner, David L., Anderson-Teixeira, Kristina J., and Novotny, Vojtech. 2020. "Vertical stratification of a temperate forest caterpillar community in eastern North America." Oecologia 192:501–514. https://doi.org/10.1007/s00442-019-04584-w
ID: 153742
Type: article
Authors: Seifert, Carlo L.; Lamarre, Greg P. A.; Volf, Martin; Jorge, Leonardo R.; Miller, Scott E.; Wagner, David L.; Anderson-Teixeira, Kristina J.; Novotny, Vojtech
Keywords: STRI; NZP; NMNH; NH-Entomology
Abstract: Vertical niche partitioning might be one of the main driving forces explaining the high diversity of forest ecosystems. However, the forest's vertical dimension has received limited investigation, especially in temperate forests. Thus, our knowledge about how communities are vertically structured remains limited for temperate forest ecosystems. In this study, we investigated the vertical structuring of an arboreal caterpillar community in a temperate deciduous forest of eastern North America. Within a 0.2-ha forest stand, all deciduous trees >= 5 cm diameter at breast height (DBH) were felled and systematically searched for caterpillars. Sampled caterpillars were assigned to a specific stratum (i.e. understory, midstory, or canopy) depending on their vertical position and classified into feeding guild as either exposed feeders or shelter builders (i.e. leaf rollers, leaf tiers, webbers). In total, 3892 caterpillars representing 215 species of butterflies and moths were collected and identified. While stratum had no effect on caterpillar density, feeding guild composition changed significantly with shelter-building caterpillars becoming the dominant guild in the canopy. Species richness and diversity were found to be highest in the understory and midstory and declined strongly in the canopy. Family and species composition changed significantly among the strata; understory and canopy showed the lowest similarity. Food web analyses further revealed an increasing network specialization towards the canopy, caused by an increase in specialization of the caterpillar community. In summary, our study revealed a pronounced stratification of a temperate forest caterpillar community, unveiling a distinctly different assemblage of caterpillars dwelling in the canopy stratum.
Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2Walker, Anthony P.De Kauwe, Martin G.Bastos, AnaBelmecheri, SoumayaGeorgiou, KaterinaKeeling, RalphMcMahon, Sean M.Medlyn, Belinda E.Moore, David J. P.Norby, Richard J.Zaehle, SönkeAnderson-Teixeira, Kristina J.Battipaglia, GiovannaBrienen, Roel J. W.Cabugao, Kristine G.Cailleret, MaximeCampbell, ElliottCanadell, JosepCiais, PhilippeCraig, Matthew E.Ellsworth, DavidFarquhar, GrahamFatichi, SimoneFisher, Joshua B.Frank, DavidGraven, HeatherGu, LianhongHaverd, VanessaHeilman, KellyHeimann, MartinHungate, Bruce A.Iversen, Colleen M.Joos, FortunatJiang, MingkaiKeenan, Trevor F.Knauer, JürgenKörner, ChristianLeshyk, Victor O.Leuzinger, SebastianLiu, YaoMacBean, NatashaMalhi, YadvinderMcVicar, TimPenuelas, JosepPongratz, JuliaPowell, A. S.Riutta, TerhiSabot, Manon E. B.Schleucher, JuergenSitch, StephenSmith, William K.Sulman, BenjaminTaylor, BentonTerrer, CésarTorn, Margaret S.Treseder, KathleenTrugman, Anna T.Trumbore, Susan E.van Mantgem, Phillip J.Voelker, Steve L.Whelan, Mary E.Zuidema, Pieter A.2020DOI: info:10.1111/nph.16866The New Phytologist1469-8137
Walker, Anthony P., De Kauwe, Martin G., Bastos, Ana, Belmecheri, Soumaya, Georgiou, Katerina, Keeling, Ralph, McMahon, Sean M., Medlyn, Belinda E., Moore, David J. P., Norby, Richard J., Zaehle, Sönke, Anderson-Teixeira, Kristina J., Battipaglia, Giovanna, Brienen, Roel J. W., Cabugao, Kristine G., Cailleret, Maxime, Campbell, Elliott, Canadell, Josep, Ciais, Philippe, Craig, Matthew E., Ellsworth, David, Farquhar, Graham, Fatichi, Simone, Fisher, Joshua B., Frank, David et al. 2020. "Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2." The New Phytologist https://doi.org/10.1111/nph.16866
ID: 156767
Type: article
Authors: Walker, Anthony P.; De Kauwe, Martin G.; Bastos, Ana; Belmecheri, Soumaya; Georgiou, Katerina; Keeling, Ralph; McMahon, Sean M.; Medlyn, Belinda E.; Moore, David J. P.; Norby, Richard J.; Zaehle, Sönke; Anderson-Teixeira, Kristina J.; Battipaglia, Giovanna; Brienen, Roel J. W.; Cabugao, Kristine G.; Cailleret, Maxime; Campbell, Elliott; Canadell, Josep; Ciais, Philippe; Craig, Matthew E.; Ellsworth, David; Farquhar, Graham; Fatichi, Simone; Fisher, Joshua B.; Frank, David; Graven, Heather; Gu, Lianhong; Haverd, Vanessa; Heilman, Kelly; Heimann, Martin; Hungate, Bruce A.; Iversen, Colleen M.; Joos, Fortunat; Jiang, Mingkai; Keenan, Trevor F.; Knauer, Jürgen; Körner, Christian; Leshyk, Victor O.; Leuzinger, Sebastian; Liu, Yao; MacBean, Natasha; Malhi, Yadvinder; McVicar, Tim; Penuelas, Josep; Pongratz, Julia; Powell, A. S.; Riutta, Terhi; Sabot, Manon E. B.; Schleucher, Juergen; Sitch, Stephen; Smith, William K.; Sulman, Benjamin; Taylor, Benton; Terrer, César; Torn, Margaret S.; Treseder, Kathleen; Trugman, Anna T.; Trumbore, Susan E.; van Mantgem, Phillip J.; Voelker, Steve L.; Whelan, Mary E.; Zuidema, Pieter A.
Keywords: SERC; STRI; NZP
Abstract: Atmospheric carbon dioxide concentration (CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of CO2 ] increase and thus climate change. However, ecosystem CO2 -responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesise theory and broad, multi-disciplinary evidence for the effects of increasing CO2 ] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industry. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2-responses are high in comparison with experiments and theory. Plant mortality and soil carbon iCO2-responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO 2Walker, Anthony P.De Kauwe, Martin G.Bastos, AnaBelmecheri, SoumayaGeorgiou, KaterinaKeeling, RalphMcMahon, Sean M.Medlyn, Belinda E.Moore, David J. P.Norby, Richard J.Zaehle, SönkeAnderson‐Teixeira, Kristina J.Battipaglia, GiovannaBrienen, Roel J. W.Cabugao, Kristine G.Cailleret, MaximeCampbell, ElliottCanadell, JosepCiais, PhilippeCraig, Matthew E.Ellsworth, DavidFarquhar, GrahamFatichi, SimoneFisher, Joshua B.Frank, DavidGraven, HeatherGu, LianhongHaverd, VanessaHeilman, KellyHeimann, MartinHungate, Bruce A.Iversen, Colleen M.Joos, FortunatJiang, MingkaiKeenan, Trevor F.Knauer, JürgenKörner, ChristianLeshyk, Victor O.Leuzinger, SebastianLiu, YaoMacBean, NatashaMalhi, YadvinderMcVicar, TimPenuelas, JosepPongratz, JuliaPowell, A. S.Riutta, TerhiSabot, Manon E. B.Schleucher, JuergenSitch, StephenSmith, William K.Sulman, BenjaminTaylor, BentonTerrer, CésarTorn, Margaret S.Treseder, KathleenTrugman, Anna T.Trumbore, Susan E.van Mantgem, Phillip J.Voelker, Steve L.Whelan, Mary E.Zuidema, Pieter A.2020DOI: info:10.1111/nph.16866New Phytologist0028-646X
Walker, Anthony P., De Kauwe, Martin G., Bastos, Ana, Belmecheri, Soumaya, Georgiou, Katerina, Keeling, Ralph, McMahon, Sean M., Medlyn, Belinda E., Moore, David J. P., Norby, Richard J., Zaehle, Sönke, Anderson‐Teixeira, Kristina J., Battipaglia, Giovanna, Brienen, Roel J. W., Cabugao, Kristine G., Cailleret, Maxime, Campbell, Elliott, Canadell, Josep, Ciais, Philippe, Craig, Matthew E., Ellsworth, David, Farquhar, Graham, Fatichi, Simone, Fisher, Joshua B., Frank, David et al. 2020. "Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO 2." New Phytologist https://doi.org/10.1111/nph.16866
ID: 156672
Type: article
Authors: Walker, Anthony P.; De Kauwe, Martin G.; Bastos, Ana; Belmecheri, Soumaya; Georgiou, Katerina; Keeling, Ralph; McMahon, Sean M.; Medlyn, Belinda E.; Moore, David J. P.; Norby, Richard J.; Zaehle, Sönke; Anderson‐Teixeira, Kristina J.; Battipaglia, Giovanna; Brienen, Roel J. W.; Cabugao, Kristine G.; Cailleret, Maxime; Campbell, Elliott; Canadell, Josep; Ciais, Philippe; Craig, Matthew E.; Ellsworth, David; Farquhar, Graham; Fatichi, Simone; Fisher, Joshua B.; Frank, David; Graven, Heather; Gu, Lianhong; Haverd, Vanessa; Heilman, Kelly; Heimann, Martin; Hungate, Bruce A.; Iversen, Colleen M.; Joos, Fortunat; Jiang, Mingkai; Keenan, Trevor F.; Knauer, Jürgen; Körner, Christian; Leshyk, Victor O.; Leuzinger, Sebastian; Liu, Yao; MacBean, Natasha; Malhi, Yadvinder; McVicar, Tim; Penuelas, Josep; Pongratz, Julia; Powell, A. S.; Riutta, Terhi; Sabot, Manon E. B.; Schleucher, Juergen; Sitch, Stephen; Smith, William K.; Sulman, Benjamin; Taylor, Benton; Terrer, César; Torn, Margaret S.; Treseder, Kathleen; Trugman, Anna T.; Trumbore, Susan E.; van Mantgem, Phillip J.; Voelker, Steve L.; Whelan, Mary E.; Zuidema, Pieter A.
Keywords: SERC; NZP
Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest treesChu, ChengjinLutz, James A.Kral, KamilVrska, TomasYin, XueMyers, Jonathan A.Abiem, IverenAlonso, AlfonsoBourg, NormBurslem, David F. R. P.Cao, MinChapman, HazelCondit, Richard S.Fang, SuqinFischer, Gunter A.Gao, LianmingHao, ZhanqinHau, Billy C. H.He, QingHector, AndrewHubbell, Stephen P.Jiang, MingxiJin, GuangzeKenfack, DavidLai, JiangshanLi, BuhangLi, XiankunLi, YideLian, JuyuLin, LuxiangLiu, YankunLiu, YuLuo, YahuangMa, KepingMcShea, WilliamMemiaghe, HerveMi, XiangchengNi, MingO'Brien, Michael J.de Oliveira, Alexandre A.Orwig, David A.Parker, Geoffrey G.Qiao, XiujuanRen, HaibaoReynolds, GlenSang, WeiguoShen, GuochunSu, ZhiyaoSui, XinghuaSun, I-FangTian, SongyanWang, BinWang, XihuaWang, XugaoWang, YoushiWeiblen, George D.Wen, ShujunXi, NianxunXiang, WushengXu, HanXu, KunYe, WanhuiZhang, BingweiZhang, JiaxinZhang, XiaotongZhang, YingmingZhu, KaiZimmerman, JessStorch, DavidBaltzer, Jennifer L.Anderson-Teixeira, Kristina J.Mittelbach, Gary G.He, Fangliang2019DOI: info:10.1111/ele.13175Ecology Lettersv. 22No. 2245255245–2551461-023X
Chu, Chengjin, Lutz, James A., Kral, Kamil, Vrska, Tomas, Yin, Xue, Myers, Jonathan A., Abiem, Iveren, Alonso, Alfonso, Bourg, Norm, Burslem, David F. R. P., Cao, Min, Chapman, Hazel, Condit, Richard S., Fang, Suqin, Fischer, Gunter A., Gao, Lianming, Hao, Zhanqin, Hau, Billy C. H., He, Qing, Hector, Andrew, Hubbell, Stephen P., Jiang, Mingxi, Jin, Guangze, Kenfack, David, Lai, Jiangshan et al. 2019. "Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees." Ecology Letters 22 (2):245–255. https://doi.org/10.1111/ele.13175
ID: 149947
Type: article
Authors: Chu, Chengjin; Lutz, James A.; Kral, Kamil; Vrska, Tomas; Yin, Xue; Myers, Jonathan A.; Abiem, Iveren; Alonso, Alfonso; Bourg, Norm; Burslem, David F. R. P.; Cao, Min; Chapman, Hazel; Condit, Richard S.; Fang, Suqin; Fischer, Gunter A.; Gao, Lianming; Hao, Zhanqin; Hau, Billy C. H.; He, Qing; Hector, Andrew; Hubbell, Stephen P.; Jiang, Mingxi; Jin, Guangze; Kenfack, David; Lai, Jiangshan; Li, Buhang; Li, Xiankun; Li, Yide; Lian, Juyu; Lin, Luxiang; Liu, Yankun; Liu, Yu; Luo, Yahuang; Ma, Keping; McShea, William; Memiaghe, Herve; Mi, Xiangcheng; Ni, Ming; O'Brien, Michael J.; de Oliveira, Alexandre A.; Orwig, David A.; Parker, Geoffrey G.; Qiao, Xiujuan; Ren, Haibao; Reynolds, Glen; Sang, Weiguo; Shen, Guochun; Su, Zhiyao; Sui, Xinghua; Sun, I-Fang; Tian, Songyan; Wang, Bin; Wang, Xihua; Wang, Xugao; Wang, Youshi; Weiblen, George D.; Wen, Shujun; Xi, Nianxun; Xiang, Wusheng; Xu, Han; Xu, Kun; Ye, Wanhui; Zhang, Bingwei; Zhang, Jiaxin; Zhang, Xiaotong; Zhang, Yingming; Zhu, Kai; Zimmerman, Jess; Storch, David; Baltzer, Jennifer L.; Anderson-Teixeira, Kristina J.; Mittelbach, Gary G.; He, Fangliang
Keywords: NZP; STRI; SERC; NMNH; NH-Botany
Abstract: Climate is widely recognised as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesised relationships amongst climate, topography, forest structural attributes (stem abundance, tree size variation and stand basal area) and tree species richness to better understand drivers of latitudinal tree diversity patterns. Climate influences tree richness both directly, with more species in warm, moist, aseasonal climates and indirectly, with more species at higher stem abundance. These results imply direct limitation of species diversity by climatic stress and more rapid (co-)evolution and narrower niche partitioning in warm climates. They also support the idea that increased numbers of individuals associated with high primary productivity are partitioned to support a greater number of species.
Temporal population variability in local forest communities has mixed effects on tree species richness across a latitudinal gradientFung, TakChisholm, Ryan A.Anderson-Teixeira, Kristina J.Bourg, NormBrockelman, Warren Y.Bunyavejchewin, SarayudhChang‐Yang, Chia-HaoChitra‐Tarak, RutujaChuyong, GeorgeCondit, RichardDattaraja, Handanakere S.Davies, Stuart J.Ewango, Corneille E. N.Fewless, GaryFletcher, ChristineGunatilleke, C. V. S.Gunatilleke, I. A. U. N.Hao, ZhanqingHogan, J. A.Howe, RobertHsieh, Chang-FuKenfack, DavidLin, YichingMa, KepingMakana, Jean-RemyMcMahon, SeanMcShea, William J.Mi, XiangchengNathalang, AnuttaraOng, Perry S.Parker, GeoffreyRau, E. -PShue, JessicaSu, Sheng-HsinSukumar, RamanSun, I. -FSuresh, Hebbalalu S.Tan, SylvesterThomas, DuncanThompson, JillValencia, RenatoVallejo, Martha I.Wang, XugaoWang, YunquanWijekoon, PushpaWolf, AmyYap, SandraZimmerman, Jess2019DOI: info:10.1111/ele.13412Ecology Letters1121–121461-023X
Fung, Tak, Chisholm, Ryan A., Anderson-Teixeira, Kristina J., Bourg, Norm, Brockelman, Warren Y., Bunyavejchewin, Sarayudh, Chang‐Yang, Chia-Hao, Chitra‐Tarak, Rutuja, Chuyong, George, Condit, Richard, Dattaraja, Handanakere S., Davies, Stuart J., Ewango, Corneille E. N., Fewless, Gary, Fletcher, Christine, Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Hao, Zhanqing, Hogan, J. A., Howe, Robert, Hsieh, Chang-Fu, Kenfack, David, Lin, Yiching, Ma, Keping, Makana, Jean-Remy et al. 2019. "Temporal population variability in local forest communities has mixed effects on tree species richness across a latitudinal gradient." Ecology Letters 1–12. https://doi.org/10.1111/ele.13412
ID: 153274
Type: article
Authors: Fung, Tak; Chisholm, Ryan A.; Anderson-Teixeira, Kristina J.; Bourg, Norm; Brockelman, Warren Y.; Bunyavejchewin, Sarayudh; Chang‐Yang, Chia-Hao; Chitra‐Tarak, Rutuja; Chuyong, George; Condit, Richard; Dattaraja, Handanakere S.; Davies, Stuart J.; Ewango, Corneille E. N.; Fewless, Gary; Fletcher, Christine; Gunatilleke, C. V. S.; Gunatilleke, I. A. U. N.; Hao, Zhanqing; Hogan, J. A.; Howe, Robert; Hsieh, Chang-Fu; Kenfack, David; Lin, Yiching; Ma, Keping; Makana, Jean-Remy; McMahon, Sean; McShea, William J.; Mi, Xiangcheng; Nathalang, Anuttara; Ong, Perry S.; Parker, Geoffrey; Rau, E. -P; Shue, Jessica; Su, Sheng-Hsin; Sukumar, Raman; Sun, I. -F; Suresh, Hebbalalu S.; Tan, Sylvester; Thomas, Duncan; Thompson, Jill; Valencia, Renato; Vallejo, Martha I.; Wang, Xugao; Wang, Yunquan; Wijekoon, Pushpa; Wolf, Amy; Yap, Sandra; Zimmerman, Jess
Keywords: STRI; SERC; NZP
Abstract: Among the local processes that determine species diversity in ecological communities, fluctuation-dependent mechanisms that are mediated by temporal variability in the abundances of species populations have received significant attention. Higher temporal variability in the abundances of species populations can increase the strength of temporal niche partitioning but can also increase the risk of species extinctions, such that the net effect on species coexistence is not clear. We quantified this temporal population variability for tree species in 21 large forest plots and found much greater variability for higher latitude plots with fewer tree species. A fitted mechanistic model showed that among the forest plots, the net effect of temporal population variability on tree species coexistence was usually negative, but sometimes positive or negligible. Therefore, our results suggest that temporal variability in the abundances of species populations has no clear negative or positive contribution to the latitudinal gradient in tree species richness.
Precipitation mediates sap flux sensitivity to evaporative demand in the neotropicsGrossiord, CharlotteChristoffersen, BradleyAlonso-Rodríguez, Aura M.Anderson-Teixeira, Kristina J.Asbjornsen, HeidiAparecido, Luiza Maria T.Carter Berry, Z.Baraloto, ChristopherBonal, DamienBorrego, IsaacBurban, BenoitChambers, Jeffrey Q.Christianson, Danielle S.Detto, MatteoFaybishenko, BorisFontes, Clarissa G.Fortunel, ClaireGimenez, Bruno O.Jardine, Kolby J.Kueppers, LaraMiller, Gretchen R.Moore, Georgianne W.Negrón-Juárez, RobinsonStahl, ClémentSwenson, Nathan G.Trotsiuk, VolodymyrVaradharajan, CharuWarren, Jeffrey M.Wolfe, Brett T.Wei, LiangWood, Tana E.Xu, ChonggangMcDowell, Nate G.2019DOI: info:10.1007/s00442-019-04513-xOecologiav. 191No. 3519530519–5300029-8549
Grossiord, Charlotte, Christoffersen, Bradley, Alonso-Rodríguez, Aura M., Anderson-Teixeira, Kristina J., Asbjornsen, Heidi, Aparecido, Luiza Maria T., Carter Berry, Z., Baraloto, Christopher, Bonal, Damien, Borrego, Isaac, Burban, Benoit, Chambers, Jeffrey Q., Christianson, Danielle S., Detto, Matteo, Faybishenko, Boris, Fontes, Clarissa G., Fortunel, Claire, Gimenez, Bruno O., Jardine, Kolby J., Kueppers, Lara, Miller, Gretchen R., Moore, Georgianne W., Negrón-Juárez, Robinson, Stahl, Clément, Swenson, Nathan G. et al. 2019. "Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics." Oecologia 191 (3):519–530. https://doi.org/10.1007/s00442-019-04513-x
ID: 152571
Type: article
Authors: Grossiord, Charlotte; Christoffersen, Bradley; Alonso-Rodríguez, Aura M.; Anderson-Teixeira, Kristina J.; Asbjornsen, Heidi; Aparecido, Luiza Maria T.; Carter Berry, Z.; Baraloto, Christopher; Bonal, Damien; Borrego, Isaac; Burban, Benoit; Chambers, Jeffrey Q.; Christianson, Danielle S.; Detto, Matteo; Faybishenko, Boris; Fontes, Clarissa G.; Fortunel, Claire; Gimenez, Bruno O.; Jardine, Kolby J.; Kueppers, Lara; Miller, Gretchen R.; Moore, Georgianne W.; Negrón-Juárez, Robinson; Stahl, Clément; Swenson, Nathan G.; Trotsiuk, Volodymyr; Varadharajan, Charu; Warren, Jeffrey M.; Wolfe, Brett T.; Wei, Liang; Wood, Tana E.; Xu, Chonggang; McDowell, Nate G.
Keywords: NZP; STRI
Abstract: Transpiration in humid tropical forests modulates the global water cycle and is a key driver of climate regulation. Yet, our understanding of how tropical trees regulate sap flux in response to climate variability remains elusive. With a progressively warming climate, atmospheric evaporative demand i.e., vapor pressure deficit (VPD)] will be increasingly important for plant functioning, becoming the major control of plant water use in the twenty-first century. Using measurements in 34 tree species at seven sites across a precipitation gradient in the neotropics, we determined how the maximum sap flux velocity (vmax) and the VPD threshold at which vmax is reached (VPDmax) vary with precipitation regime mean annual precipitation (MAP); seasonal drought intensity (PDRY)] and two functional traits related to foliar and wood economics spectra leaf mass per area (LMA); wood specific gravity (WSG)]. We show that, even though vmax is highly variable within sites, it follows a negative trend in response to increasing MAP and PDRY across sites. LMA and WSG exerted little effect on vmax and VPDmax, suggesting that these widely used functional traits provide limited explanatory power of dynamic plant responses to environmental variation within hyper-diverse forests. This study demonstrates that long-term precipitation plays an important role in the sap flux response of humid tropical forests to VPD. Our findings suggest that under higher evaporative demand, trees growing in wetter environments in humid tropical regions may be subjected to reduced water exchange with the atmosphere relative to trees growing in drier climates.
No significant increase in tree mortality following coring in a temperate hardwood forestHelcoski, RyanTepley, Alan J.McGarvey, Jennifer C.Gonzalez-Akre, ErikaMeakem, VictoriaThompson, Jonathan R.Anderson-Teixeira, Kristina J.2019DOI: info:10.3959/1536-1098-75.1.67Tree-Ring Researchv. 75No. 1677267–721536-1098
Helcoski, Ryan, Tepley, Alan J., McGarvey, Jennifer C., Gonzalez-Akre, Erika, Meakem, Victoria, Thompson, Jonathan R., and Anderson-Teixeira, Kristina J. 2019. "No significant increase in tree mortality following coring in a temperate hardwood forest." Tree-Ring Research 75 (1):67–72. https://doi.org/10.3959/1536-1098-75.1.67
ID: 150142
Type: article
Authors: Helcoski, Ryan; Tepley, Alan J.; McGarvey, Jennifer C.; Gonzalez-Akre, Erika; Meakem, Victoria; Thompson, Jonathan R.; Anderson-Teixeira, Kristina J.
Keywords: STRI; NZP
Abstract: The collection of tree-ring data from living trees is widespread and highly valuable in ecological and dendro-climatological research, yet there is concern that coring injures trees, potentially contributing to mortality. Unlike resinous conifers that can quickly compartmentalize wounds, less decay-resistant angiosperms may face more pronounced risk of injury from coring. To test if coring increases mortality rates in temperate hardwood trees, we leverage a unique dataset tracking the mortality of cored and uncored hardwood trees representing 19 species from 10 genera in a 26-ha plot in Virginia, USA. We compare mortality rates between 935 cored trees and 8,605 uncored trees for seven years following coring. Annual mortality rates did not differ between cored trees (1.71% yr−1; 95% CI 1.40 to 2.20)and uncored trees (1.85% yr−1; 95% CI 1.70 to 2.28)across the full dataset , nor were there differences by genus or size class. These results indicate that the risk of hardwood mortality due to increment coring is probably lower than previously assumed. However, these results cannot rule out the possibility that coring elevates hardwood mortality in other climates or when trees face multiple additional stressors that were not prevalent over the course of our study.
Growing season moisture drives interannual variation in woody productivity of a temperate deciduous forestHelcoski, RyanTepley, Alan J.Pederson, NeilMcGarvey, Jennifer C.Meakem, VictoriaHerrmann, ValentineThompson, Jonathan R.Anderson-Teixeira, Kristina J.2019DOI: info:10.1111/nph.15906New Phytologistv. 223No. 3120412161204–12160028-646X
Helcoski, Ryan, Tepley, Alan J., Pederson, Neil, McGarvey, Jennifer C., Meakem, Victoria, Herrmann, Valentine, Thompson, Jonathan R., and Anderson-Teixeira, Kristina J. 2019. "Growing season moisture drives interannual variation in woody productivity of a temperate deciduous forest." New Phytologist 223 (3):1204–1216. https://doi.org/10.1111/nph.15906
ID: 151333
Type: article
Authors: Helcoski, Ryan; Tepley, Alan J.; Pederson, Neil; McGarvey, Jennifer C.; Meakem, Victoria; Herrmann, Valentine; Thompson, Jonathan R.; Anderson-Teixeira, Kristina J.
Keywords: NZP; STRI
Abstract: 1.The climate sensitivity of forest ecosystem woody productivity (ANPPstem ) influences carbon cycle responses to climate change. For the first time, we combine long-term annual growth and forest census data of a diverse temperate broadleaf deciduous forest, seeking to resolve whether ANPPstem is primarily moisture- or energy-limited and whether climate sensitivity has changed in recent decades characterized by more mesic conditions and elevated CO2 . 2.We analyzed tree-ring chronologies across 109 years of monthly climatic variation (1901-2009) for 14 species representing 97% of ANPPstem in a 25.6-ha plot in northern Virginia, USA. 3.Radial growth of most species and ecosystem-level ANPPstem responded positively to cool, moist growing season conditions, but the same conditions in the previous May-July were associated with reduced growth. In recent decades (1980-2009), responses were more variable and on average, weaker. 4.Our results indicate that woody productivity is primarily limited by current growing season moisture, as opposed to temperature or sunlight, but additional complexity in climate sensitivity may reflect the use of stored carbohydrate reserves. Overall, while such forests currently display limited moisture sensitivity, their woody productivity is likely to decline under projected hotter and potentially drier growing season conditions. This article is protected by copyright. All rights reserved.
Alternative stable equilibria and critical thresholds created by fire regimes and plant responses in a fire-prone communityMiller, Adam D.Thompson, Jonathan R.Tepley, Alan J.Anderson-Teixeira, Kristina J.2019DOI: info:10.1111/ecog.03491Ecographyv. 42No. 1556655–660906-7590
Miller, Adam D., Thompson, Jonathan R., Tepley, Alan J., and Anderson-Teixeira, Kristina J. 2019. "Alternative stable equilibria and critical thresholds created by fire regimes and plant responses in a fire-prone community." Ecography 42 (1):55–66. https://doi.org/10.1111/ecog.03491
ID: 148536
Type: article
Authors: Miller, Adam D.; Thompson, Jonathan R.; Tepley, Alan J.; Anderson-Teixeira, Kristina J.
Keywords: STRI; NZP
Abstract: Wildfire is a dominant disturbance in many ecosystems, and fire frequency and intensity are being altered as climates change. Through effects on mortality and regeneration, fire affects plant community composition, species richness, and carbon cycling. In some regions, changes to fire regimes could result in critical, non-reversible transitions from forest to non-forested states. For example, the Klamath ecoregion (northwest United States) supports extensive conifer forests that are initially replaced by hardwood chaparral following high-severity fire, but eventually return to conifer forest during the fire-free periods. Climate change alters both the fire regime and post-fire recovery dynamics, potentially causing shrubland to persist as a stable (i.e. self-renewing) vegetation stage, rather than an ephemeral stage. Here, we present a theoretical investigation of how changes in plant traits and fire regimes can alter the stability of communities in forest-shrub systems such as the Klamath. Our model captures the key characteristics of the system, including life-stage-specific responses to disturbance and asymmetrical competitive interactions. We assess vegetation stability via invasion analysis, and conclude that portions of the landscape that are currently forested also can be stable as shrubland. We identify parameter thresholds where community equilibria change from stable to unstable, and show how these thresholds may shift in response to changes in life-history or environmental parameters. For instance, conifer maturation rates are expected to decrease as aridity increases under climate change, and our model shows that this reduction decreases the fire frequencies at which forests become unstable. Increases in fire activity sufficient to destabilize forest communities are likely to occur in more arid future climates. If widespread, this would result in reduced carbon stocks and a positive feedback to climate change. Changes in stability may be altered by management practices.
Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot dataRequena Suarez, DanielaRozendaal, Danaë M. A.De Sy, VeroniquePhillips, Oliver L.Alvarez-Dávila, EstebanAnderson-Teixeira, Kristina J.Araujo-Murakami, AlejandroArroyo, LuzmilaBaker, Timothy R.Bongers, FransBrienen, Roel J. W.Carter, SarahCook-Patton, SusanFeldpausch, Ted R.Griscom, Bronson W.Harris, NancyHérault, BrunoHonorio Coronado, Eurídice N.Leavitt, Sara M.Lewis, Simon L.Marimon, Beatriz S.Monteagudo Mendoza, AbelN'dja, Justin KassiN'Guessan, Anny EstellePoorter, LourensQie, LanRutishauser, ErvanSist, PlinioSonké, BonaventureSullivan, Martin J. P.Vilanova, EmilioWang, Maria M. H.Martius, ChristopherHerold, Martin2019DOI: info:10.1111/gcb.14767Global Change Biologyv. 25No. 11360936243609–36241354-1013
Requena Suarez, Daniela, Rozendaal, Danaë M. A., De Sy, Veronique, Phillips, Oliver L., Alvarez-Dávila, Esteban, Anderson-Teixeira, Kristina J., Araujo-Murakami, Alejandro, Arroyo, Luzmila, Baker, Timothy R., Bongers, Frans, Brienen, Roel J. W., Carter, Sarah, Cook-Patton, Susan, Feldpausch, Ted R., Griscom, Bronson W., Harris, Nancy, Hérault, Bruno, Honorio Coronado, Eurídice N., Leavitt, Sara M., Lewis, Simon L., Marimon, Beatriz S., Monteagudo Mendoza, Abel, N'dja, Justin Kassi, N'Guessan, Anny Estelle, Poorter, Lourens et al. 2019. "Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data." Global Change Biology 25 (11):3609–3624. https://doi.org/10.1111/gcb.14767
ID: 151790
Type: article
Authors: Requena Suarez, Daniela; Rozendaal, Danaë M. A.; De Sy, Veronique; Phillips, Oliver L.; Alvarez-Dávila, Esteban; Anderson-Teixeira, Kristina J.; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Baker, Timothy R.; Bongers, Frans; Brienen, Roel J. W.; Carter, Sarah; Cook-Patton, Susan; Feldpausch, Ted R.; Griscom, Bronson W.; Harris, Nancy; Hérault, Bruno; Honorio Coronado, Eurídice N.; Leavitt, Sara M.; Lewis, Simon L.; Marimon, Beatriz S.; Monteagudo Mendoza, Abel; N'dja, Justin Kassi; N'Guessan, Anny Estelle; Poorter, Lourens; Qie, Lan; Rutishauser, Ervan; Sist, Plinio; Sonké, Bonaventure; Sullivan, Martin J. P.; Vilanova, Emilio; Wang, Maria M. H.; Martius, Christopher; Herold, Martin
Keywords: STRI; NZP
Abstract: As countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (∆AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ∆AGB rates, which are values per ecological zone, per continent. Similarly, research on forest biomass change at large scale also make use of these rates. IPCC 2006 default rates come from a handful of studies, provide no uncertainty indications, and do not distinguish between older secondary forests and old-growth forests. As part of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, we incorporate ∆AGB data available from 2006 onwards, comprising 176 chronosequences in secondary forests and 536 permanent plots in old-growth and managed/logged forests located in 42 countries in Africa, North and South America, and Asia. We generated ∆AGB rate estimates for younger secondary forests (≤20 years), older secondary forests (>20 years and up to 100 years) and old-growth forests, and accounted for uncertainties in our estimates. In tropical rainforests, for which data availability was the highest, our ∆AGB rate estimates ranged from 3.4 (Asia) to 7.6 (Africa) Mg ha-1 yr-1 in younger secondary forests, from 2.3 (North and South Ameri09ca) to 3.5 (Africa) Mg ha-1 yr-1 in older secondary forests, and 0.7 (Asia) to 1.3 (Africa) Mg ha-1 yr-1 in old-growth forests. We provide a rigorous and traceable refinement of the IPCC 2006 default rates in tropical and subtropical ecological zones, and identify which areas require more research on ∆AGB. In this respect, this study should be considered as an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy; our new rates can be used for large-scale GHG accounting by governmental bodies, non-governmental organisations and in scientific research. This article is protected by copyright. All rights reserved.
Quantitative assessment of plant-arthropod interactions in forest canopies: A plot-based approachVolf, MartinKlimeš, PetrLamarre, Greg P. A.Redmond, Conor M.Seifert, Carlo L.Abe, TomokazuAuga, JohnAnderson-Teixeira, Kristina J.Basset, YvesBeckett, SaulButterill, Philip T.Drozd, PavelGonzález-Akre, ErikaKaman, OndřejKamata, NaotoLaird-Hopkins, BenitaLibra, MartinManumbor, MarkusMiller, Scott E.Molem, KennethMottl, OndřejMurakami, MasashiNakaji, TatsuroPlowman, Nichola S.Pyszko, PetrŠigut, MartinŠipoš, JanTropek, RobertWeiblen, George D.Novotny, Vojtech2019DOI: info:10.1371/journal.pone.0222119PloS Onev. 14No. 10Article e0222119Article e02221191932-6203
Volf, Martin, Klimeš, Petr, Lamarre, Greg P. A., Redmond, Conor M., Seifert, Carlo L., Abe, Tomokazu, Auga, John, Anderson-Teixeira, Kristina J., Basset, Yves, Beckett, Saul, Butterill, Philip T., Drozd, Pavel, González-Akre, Erika, Kaman, Ondřej, Kamata, Naoto, Laird-Hopkins, Benita, Libra, Martin, Manumbor, Markus, Miller, Scott E., Molem, Kenneth, Mottl, Ondřej, Murakami, Masashi, Nakaji, Tatsuro, Plowman, Nichola S., Pyszko, Petr et al. 2019. "Quantitative assessment of plant-arthropod interactions in forest canopies: A plot-based approach." PloS One 14 (10):Article e0222119. https://doi.org/10.1371/journal.pone.0222119
ID: 153001
Type: article
Authors: Volf, Martin; Klimeš, Petr; Lamarre, Greg P. A.; Redmond, Conor M.; Seifert, Carlo L.; Abe, Tomokazu; Auga, John; Anderson-Teixeira, Kristina J.; Basset, Yves; Beckett, Saul; Butterill, Philip T.; Drozd, Pavel; González-Akre, Erika; Kaman, Ondřej; Kamata, Naoto; Laird-Hopkins, Benita; Libra, Martin; Manumbor, Markus; Miller, Scott E.; Molem, Kenneth; Mottl, Ondřej; Murakami, Masashi; Nakaji, Tatsuro; Plowman, Nichola S.; Pyszko, Petr; Šigut, Martin; Šipoš, Jan; Tropek, Robert; Weiblen, George D.; Novotny, Vojtech
Keywords: NMNH; STRI; NH-Entomology; NZP
Abstract: Research on canopy arthropods has progressed from species inventories to the study of their interactions and networks, enhancing our understanding of how hyper-diverse communities are maintained. Previous studies often focused on sampling individual tree species, individual trees or their parts. We argue that such selective sampling is not ideal when analyzing interaction network structure, and may lead to erroneous conclusions. We developed practical and reproducible sampling guidelines for the plot-based analysis of arthropod interaction networks in forest canopies. Our sampling protocol focused on insect herbivores (leaf-chewing insect larvae, miners and gallers) and non-flying invertebrate predators (spiders and ants). We quantitatively sampled the focal arthropods from felled trees, or from trees accessed by canopy cranes or cherry pickers in 53 0.1 ha forest plots in five biogeographic regions, comprising 6,280 trees in total. All three methods required a similar sampling effort and provided good foliage accessibility. Furthermore, we compared interaction networks derived from plot-based data to interaction networks derived from simulated non-plot-based data focusing either on common tree species or a representative selection of tree families. All types of non-plot-based data showed highly biased network structure towards higher connectance, higher web asymmetry, and higher nestedness temperature when compared with plot-based data. Furthermore, some types of non-plot-based data showed biased diversity of the associated herbivore species and specificity of their interactions. Plot-based sampling thus appears to be the most rigorous approach for reconstructing realistic, quantitative plant-arthropod interaction networks that are comparable across sites and regions. Studies of plant interactions have greatly benefited from a plot-based approach and we argue that studies of arthropod interactions would benefit in the same way. We conclude that plot-based studies on canopy arthropods would yield important insights into the processes of interaction network assembly and dynamics, which could be maximised via a coordinated network of plot-based study sites.
Prioritizing Biodiversity and CarbonAnderson-Teixeira, Kristina J.2018DOI: info:10.1038/s41558-018-0242-6Nature Climate Changev. 8No. 8667668667–6681758-678X
Anderson-Teixeira, Kristina J. 2018. "Prioritizing Biodiversity and Carbon." Nature Climate Change 8 (8):667–668. https://doi.org/10.1038/s41558-018-0242-6
ID: 148490
Type: article
Authors: Anderson-Teixeira, Kristina J.
Keywords: NZP; STRI
Abstract: Protecting and restoring forests to mitigate climate change also promises to help protect tropical biodiversity and ecosystem services. Analysis now shows that optimizing for carbon can come at the expense of protecting biodiversity, but there are ways to effectively pair the two.
ForC: A global database of forest carbon stocks and fluxesAnderson-Teixeira, Kristina J.Wang, Maria M. H.McGarvey, Jennifer C.Herrmann, ValentineTepley, Alan J.Bond-Lamberty, BenLeBauer, David S.2018DOI: info:10.1002/ecy.2229Ecologyv. 99No. 6150715070012-9658
Anderson-Teixeira, Kristina J., Wang, Maria M. H., McGarvey, Jennifer C., Herrmann, Valentine, Tepley, Alan J., Bond-Lamberty, Ben, and LeBauer, David S. 2018. "ForC: A global database of forest carbon stocks and fluxes." Ecology 99 (6):1507. https://doi.org/10.1002/ecy.2229
ID: 146200
Type: article
Authors: Anderson-Teixeira, Kristina J.; Wang, Maria M. H.; McGarvey, Jennifer C.; Herrmann, Valentine; Tepley, Alan J.; Bond-Lamberty, Ben; LeBauer, David S.
Keywords: STRI; NZP
Abstract: Forests play an influential role in the global carbon (C) cycle, storing roughly half of terrestrial C and annually exchanging with the atmosphere more than ten times the carbon dioxide (CO2) emitted by anthropogenic activities. Yet, scaling up from field-based measurements of forest C stocks and fluxes to understand global scale C cycling and its climate sensitivity remains an important challenge. Tens of thousands of forest C measurements have been made, but these data have yet to be integrated into a single database that makes them accessible for integrated analyses. Here we present an open-access global Forest Carbon database (ForC) containing previously published records of field-based measurements of ecosystem-level C stocks and annual fluxes, along with disturbance history and methodological information. ForC expands upon the previously published tropical portion of this database, TropForC (DOI: 10.5061/dryad.t516f), now including 17,367 records (previously 3,568) representing 2,731 plots (previously 845) in 826 geographically distinct areas. The database covers all forested biogeographic and climate zones, represents forest stands of all ages, and currently includes data collected between 1934 and 2015. We expect that ForC will prove useful for macroecological analyses of forest C cycling, for evaluation of model predictions or remote sensing products, for quantifying the contribution of forests to the global C cycle, and for supporting international efforts to inventory forest carbon and greenhouse gas exchange. A dynamic version of ForC is maintained at on GitHub (https://GitHub.com/forc-db), and we encourage the research community to collaborate in updating, correcting, expanding, and utilizing this database. ForC is an open access database, and we encourage use of the data for scientific research and education purposes. Data may not be used for commercial purposes without written permission of the database PI. Any publications using ForC data should cite this publication and Anderson-Teixeira et al. 2016(a) (see Metadata S1). No other copyright or cost restrictions are associated with the use of this dataset. This article is protected by copyright. All rights reserved.
Climate sensitive size-dependent survival in tropical treesJohnson, Daniel J.Needham, JessicaXu, ChonggangMassoud, Elias C.Davies, Stuart J.Anderson-Teixeira, Kristina J.Bunyavejchewin, SarayudhChambers, Jeffery Q.Chang-Yang, Chia-HaoChiang, Jyh-MinChuyong, George B.Condit, Richard S.Cordell, SusanFletcher, ChristineGiardina, Christian P.Giambelluca, Thomas W.Gunatilleke, NimalGunatilleke, SavitriHsieh, Chang-FuHubbell, StephenInman-Narahari, FaithKassim, Abdul RahmanKatabuchi, MasatoshiKenfack, DavidLitton, Creighton M.Lum, ShawnMohamad, MohizahNasardin, MusalmahOng, Perry S.Ostertag, RebeccaSack, LawrenSwenson, Nathan G.Sun, I. FangTan, SylvesterThomas, Duncan W.Thompson, JillUmana, Maria NataliaUriarte, MariaValencia, RenatoYap, SandraZimmerman, JessMcDowell, Nate G.McMahon, Sean M.2018DOI: info:10.1038/s41559-018-0626-zNature Ecology & Evolutionv. 2No. 9143614421436–14422397-334X
Johnson, Daniel J., Needham, Jessica, Xu, Chonggang, Massoud, Elias C., Davies, Stuart J., Anderson-Teixeira, Kristina J., Bunyavejchewin, Sarayudh, Chambers, Jeffery Q., Chang-Yang, Chia-Hao, Chiang, Jyh-Min, Chuyong, George B., Condit, Richard S., Cordell, Susan, Fletcher, Christine, Giardina, Christian P., Giambelluca, Thomas W., Gunatilleke, Nimal, Gunatilleke, Savitri, Hsieh, Chang-Fu, Hubbell, Stephen, Inman-Narahari, Faith, Kassim, Abdul Rahman, Katabuchi, Masatoshi, Kenfack, David, Litton, Creighton M. et al. 2018. "Climate sensitive size-dependent survival in tropical trees." Nature Ecology & Evolution 2 (9):1436–1442. https://doi.org/10.1038/s41559-018-0626-z
ID: 148617
Type: article
Authors: Johnson, Daniel J.; Needham, Jessica; Xu, Chonggang; Massoud, Elias C.; Davies, Stuart J.; Anderson-Teixeira, Kristina J.; Bunyavejchewin, Sarayudh; Chambers, Jeffery Q.; Chang-Yang, Chia-Hao; Chiang, Jyh-Min; Chuyong, George B.; Condit, Richard S.; Cordell, Susan; Fletcher, Christine; Giardina, Christian P.; Giambelluca, Thomas W.; Gunatilleke, Nimal; Gunatilleke, Savitri; Hsieh, Chang-Fu; Hubbell, Stephen; Inman-Narahari, Faith; Kassim, Abdul Rahman; Katabuchi, Masatoshi; Kenfack, David; Litton, Creighton M.; Lum, Shawn; Mohamad, Mohizah; Nasardin, Musalmah; Ong, Perry S.; Ostertag, Rebecca; Sack, Lawren; Swenson, Nathan G.; Sun, I. Fang; Tan, Sylvester; Thomas, Duncan W.; Thompson, Jill; Umana, Maria Natalia; Uriarte, Maria; Valencia, Renato; Yap, Sandra; Zimmerman, Jess; McDowell, Nate G.; McMahon, Sean M.
Keywords: SERC; NZP; STRI
Abstract: Survival rates of large trees determine forest biomass dynamics. Survival rates of small trees have been linked to mechanisms that maintain biodiversity across tropical forests. How species survival rates change with size offers insight into the links between biodiversity and ecosystem function across tropical forests. We tested patterns of size-dependent tree survival across the tropics using data from 1,781 species and over 2 million individuals to assess whether tropical forests can be characterized by size-dependent life-history survival strategies. We found that species were classifiable into four 'survival modes' that explain life-history variation that shapes carbon cycling and the relative abundance within forests. Frequently collected functional traits, such as wood density, leaf mass per area and seed mass, were not generally predictive of the survival modes of species. Mean annual temperature and cumulative water deficit predicted the proportion of biomass of survival modes, indicating important links between evolutionary strategies, climate and carbon cycling. The application of survival modes in demographic simulations predicted biomass change across forest sites. Our results reveal globally identifiable size-dependent survival strategies that differ across diverse systems in a consistent way. The abundance of survival modes and interaction with climate ultimately determine forest structure, carbon storage in biomass and future forest trajectories.