Search Results
Showing 1-20 of about 16482 results.
Airborne DNA reveals predictable spatial and seasonal dynamics of fungiDOI: info:10.1038/s41586-024-07658-9
Abrego, Nerea, Furneaux, Brendan, Hardwick, Bess, Somervuo, Panu, Palorinne, Isabella, Aguilar-Trigueros, Carlos, Andrew, Nigel R., Babiy, Ulyana V., Bao, Tan, Bazzano, Gisela, Bondarchuk, Svetlana N., Bonebrake, Timothy C., Brennan, Georgina L., Bret-Harte, Syndonia, Bässler, Claus, Cagnolo, Luciano, Cameron, Erin K., Chapurlat, Elodie, Creer, Simon, D’Acqui, Luigi P., De Vere, Natasha, Desprez-Loustau, Marie, Dongmo, Michel A. K., Jacobsen, Ida B. Dyrholm, Fisher, Brian L. et al. 2024. "Airborne DNA reveals predictable spatial and seasonal dynamics of fungi." Nature, https://doi.org/10.1038/s41586-024-07658-9.
Geohistorical insights into marine functional connectivityDOI: info:10.1093/icesjms/fsae117
Agiadi, Konstantina, Caswell, Bryony A., Almeida, Rita, Becheker, Ali, Blanco, Andreu, Brito, Cristina, León-Cobo, Manuel Jesús, Cook, Ellie-Mae E., Costantini, Federica, Karakuş, Merve, Leprieur, Fabien, López, Cataixa, López-López, Lucía, O’Dea, Aaron, Pallacks, Sven, Rabanal, Irene, Schultz, Lotta, Tanner, Susanne E., Theodoropoulou, Tatiana, Thurstan, Ruth H., Vieira, Nina, and Darnaude, Audrey M. 2024. "Geohistorical insights into marine functional connectivity." ICES Journal of Marine Science, https://doi.org/10.1093/icesjms/fsae117.
The genome sequence of , Peters, 1867 (Chiroptera, Emballonuridae, Rhynchonycteris)DOI: info:10.12688/wellcomeopenres.19959.1v. 9361
Alvarez Van Tussenbroek, Ine, Knörnschild, Mirjam, Nagy, Martina, O'Toole, Brian P., Formenti, Giulio, Philge, Philip, Zhang, Ning, Abueg, Linelle, Brajuka, Nadolina, Jarvis, Erich, Volkert, Thomas L., Gray, Jonathan L., Pieri, Myrtani, Mai, Meike, Teeling, Emma C., Vernes, Sonja C., The Bat, Biology Foundation, and The, Bat1K Consortium. 2024. "The genome sequence of Rhynchonycteris naso, Peters, 1867 (Chiroptera, Emballonuridae, Rhynchonycteris)." Wellcome Open Research, 9 361. https://doi.org/10.12688/wellcomeopenres.19959.1.
Estimating the body size of orchid bees (Hymenoptera: Apidae: Euglossini) using the distance between their tegulaeDOI: info:10.14411/eje.2024.006v. 12137–39
Añino, Yostin, Trujillo, Julio, de Sedas, Abraham, Santos, Alonso, Garrido, Anette, and Gálvez, Dumas. 2024. "Estimating the body size of orchid bees (Hymenoptera: Apidae: Euglossini) using the distance between their tegulae." Eur.J.Entomol, 121 37–39. https://doi.org/10.14411/eje.2024.006.
Insights into the Naso-Oropharyngeal Bacterial Composition in Suspected SARS-CoV-2 CasesDOI: info:10.3390/pathogens13080615v. 13No. 8
Atencio, Librada A., Quintero, Indira J., Almanza, Alejandro, Eskildsen, Gilberto, Sánchez-Gallego, Joel, Herrera, Mellissa, Fernández-Marín, Hermógenes, Loaiza, José R., and Mejía, Luis C. 2024. "Insights into the Naso-Oropharyngeal Bacterial Composition in Suspected SARS-CoV-2 Cases." Pathogens, 13, (8). https://doi.org/10.3390/pathogens13080615.
Neighbourhood effects on herbivory damage and chemical profiles in short-rotation coppice willows and their hybridsDOI: info:10.1016/j.phytochem.2024.114249v. 228
Aubona, Gibson, Mezzomo, Priscila, Sedio, Brian E., Staab, Michael, and Volf, Martin. 2024. "Neighbourhood effects on herbivory damage and chemical profiles in short-rotation coppice willows and their hybrids." Phytochemistry, 228. https://doi.org/10.1016/j.phytochem.2024.114249.
The benefits of woody plant stem photosynthesis extend to hydraulic function and drought survival in DOI: info:10.1093/treephys/tpae013
Ávila-Lovera, Eleinis, Haro, Roxana, Choudhary, Manika, Acosta-Rangel, Aleyda, Pratt, R. B., and Santiago, Louis S. 2024. "The benefits of woody plant stem photosynthesis extend to hydraulic function and drought survival in Parkinsonia florida." Tree physiology, https://doi.org/10.1093/treephys/tpae013.
Variation in stem bark conductance to water vapor in Neotropical plant speciesDOI: info:10.3389/ffgc.2023.1278803v. 6
Ávila-Lovera, Eleinis and Winter, Klaus. 2024. "Variation in stem bark conductance to water vapor in Neotropical plant species." Frontiers in Forests and Global Change, 6. https://doi.org/10.3389/ffgc.2023.1278803.
Epigenetic Diversity and the Evolutionary Potential of Wild PopulationsDOI: info:10.1111/eva.70011v. 17No. 10
Baltazar‐Soares, Miguel, Balard, Alice, and Heckwolf, Melanie J. 2024. "Epigenetic Diversity and the Evolutionary Potential of Wild Populations." Evolutionary Applications, 17, (10). https://doi.org/10.1111/eva.70011.
Bornean tropical forests recovering from logging at risk of regeneration failureDOI: info:10.1111/gcb.17209v. 30No. 3
Bartholomew, David C., Hayward, Robin, Burslem, David F. R. P., Bittencourt, Paulo R. L., Chapman, Daniel, Bin Suis,Mohd, Aminur Faiz, Nilus, Reuben, O'Brien, Michael J., Reynolds, Glen, Rowland, Lucy, Banin, Lindsay F., and Dent, Daisy. 2024. "Bornean tropical forests recovering from logging at risk of regeneration failure." Global Change Biology, 30, (3). https://doi.org/10.1111/gcb.17209.
Centering relationships to place for more meaningful research and engagementDOI: info:10.1073/pnas.2306991121v. 121No. 25
Beaty, Fiona, Domínguez-Sánchez, P. Santiago, Nalven, Katharine Bear, Palacios-Abrantes, Juliano, Oken, Kiva L., Ban, Natalie C., Nickols, Kerry J., Juanes, Francis, Okey, Thomas A., Spalding, Ana K., Nalini Morzaria-Luna, Hem, Jenkins, Lekelia Danielle, Tulloch, Vivitskaia, and McKechnie, Iain. 2024. "Centering relationships to place for more meaningful research and engagement." Proceedings of the National Academy of Sciences, 121, (25). https://doi.org/10.1073/pnas.2306991121.
Feeding efficiency of two coexisting nectarivorous bat species (Phyllostomidae: Glossophaginae) at flowers of two key-resource plantsDOI: info:10.1371/journal.pone.0303227v. 19No. 6
Bechler, Jan Philipp, Steiner, Kira, and Tschapka, Marco. 2024. "Feeding efficiency of two coexisting nectarivorous bat species (Phyllostomidae: Glossophaginae) at flowers of two key-resource plants." PLOS ONE, 19, (6). https://doi.org/10.1371/journal.pone.0303227.
A global blueberry phylogeny: Evolution, diversification, and biogeography of Vaccinieae (Ericaceae)DOI: info:10.1016/j.ympev.2024.108202v. 201
Becker, Anna L., Crowl, Andrew A., Luteyn, James L., Chanderbali, Andre S., Judd, Walter S., Manos, Paul S., Soltis, Douglas E., Smith, Stephen A., Goncalves, Deise J. P., Dick, Christopher W., Weaver, William N., Soltis, Pamela S., Cellinese, Nico, and Fritsch, Peter W. 2024. "A global blueberry phylogeny: Evolution, diversification, and biogeography of Vaccinieae (Ericaceae)." Molecular phylogenetics and evolution, 201. https://doi.org/10.1016/j.ympev.2024.108202.
Animals in restoration to achieve climate biodiversity targetsDOI: info:10.1016/j.tree.2024.08.011
Bello, Carolina, Dent, Daisy H., and Crowther, Thomas W. 2024. "Animals in restoration to achieve climate biodiversity targets." Trends in Ecology & Evolution, https://doi.org/10.1016/j.tree.2024.08.011.
Patterns in the genetic structure of 49 lowland rain forest tree species co‐distributed on opposite sides of the northern AndesDOI: info:10.1111/btp.13303
Bemmels, Jordan B., Pérez, Álvaro, Valencia, Renato, and Dick, Christopher W. 2024. "Patterns in the genetic structure of 49 lowland rain forest tree species co‐distributed on opposite sides of the northern Andes." Biotropica, https://doi.org/10.1111/btp.13303.
Community Action: Planning for Specimen Management in Funding ProposalsDOI: info:10.1093/biosci/biae032v. 74No. 7Oxford University Press435–439
Bentley, Andrew, Thiers, Barbara, Moser, William E., Watkins-Colwell, Gregory J., Zimkus, Breda M., Monfils, Anna K., Franz, Nico M., Bates, John M., Boundy-Mills, Kyria, Lomas, Michael W., Ellwood, Elizabeth R., Poo, Sinlan, Contreras, Dori L., Webster, Michael S., Nelson, Gil, and Pandey, Jyotsna L. 2024. "Community Action: Planning for Specimen Management in Funding Proposals." Bioscience, 74, (7) 435–439. https://doi.org/10.1093/biosci/biae032.
A rapid inventory of amphibians, squamates, and bats of Mata de Plátano Field Station and Nature Reserve, Arecibo, Puerto RicoDOI: info:10.1002/ece3.11648v. 14No. 7
Bernstein, Justin Matthew, Calderón‐Acevedo, Camilo Andrés, Mônico, Pedro Ivo, Viñola‐Lopez, Lázaro Willian, and Soto‐Centeno, J. Angel. 2024. "A rapid inventory of amphibians, squamates, and bats of Mata de Plátano Field Station and Nature Reserve, Arecibo, Puerto Rico." Ecology and Evolution, 14, (7). https://doi.org/10.1002/ece3.11648.
Synchronous Tropical Andean Hydroclimate Variability During the Last MillenniumDOI: info:10.1029/2023JD040255v. 129No. 13American Geophysical Union
Bird, B. W., Steinman, B. A., Escobar, Jaime, Correa-Metrio, A., Holper, K., Gibson, D. K., Mark, S., and Fonseca, H. 2024. "Synchronous Tropical Andean Hydroclimate Variability During the Last Millennium." Journal of Geophysical Research-Atmospheres, 129, (13). https://doi.org/10.1029/2023JD040255.
Nitrogen and phosphorus availability alters tree‐grass competition intensity in savannasDOI: info:10.1111/1365-2745.14284
Biro, Arielle, Wong, Michelle Y., Zhou, Yong, Batterman, Sarah A., and Staver, A. C. 2024. "Nitrogen and phosphorus availability alters tree‐grass competition intensity in savannas." Journal of Ecology, https://doi.org/10.1111/1365-2745.14284.
The moon’s influence on the activity of tropical forest mammalsDOI: info:10.1098/rspb.2024.0683v. 291No. 2033
Bischof, Richard, Vallejo-Vargas, Andrea, Semper-Pascual, Asunci, Schowanek, Simon D., Beaudrot, Lydia, Turek, Daniel, Jansen, Patrick A., Rovero, Francesco, Johnson, Steig E., Guimarães Moreira Lima, Marcela, Santos, Fernanda, Uzabaho, Eustrate, Espinosa, Santiago, Ahumada, Jorge A., Bitariho, Robert, Salvador, Julia, Mugerwa, Badru, Sainge, Moses N., and Sheil, Douglas. 2024. "The moon’s influence on the activity of tropical forest mammals." Proceedings of the Royal Society B: Biological Sciences, 291, (2033). https://doi.org/10.1098/rspb.2024.0683.